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Abstract

We propose a method for optimization with semi-infinite constraints that
involve a linear combination of functions, focusing on shape-constrained opti-
mization with exponential functions. Each function is lower and upper bounded
on sub-intervals by low-degree polynomials. Thus, the constraints can be ap-
proximated with polynomial inequalities that can be implemented with linear
matrix inequalities. Convexity is preserved, but the problem has now a finite
number of constraints. We show how to take advantage of the properties of the
exponential function in order to build quickly accurate approximations. The
problem used for illustration is the least-squares fitting of a positive sum of
exponentials to an empirical probability density function. When the exponents
are given, the problem is convex, but we also give a procedure for optimizing
the exponents. Several examples show that the method is flexible, accurate and
gives better results than other methods for the investigated problems.
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1 Introduction

1.1 The problem

Our main aim is to give a detailed procedure for solving a class of semi-infinite
programming (SIP) problems involving functions of the form

f(t) =

n
∑

i=1

pi(t)e
−λit, (1)

where 0 ≤ λ1 < . . . < λn and pi(t) =
∑κi

j=0 αi,jt
j are polynomials. For the sake of

abbreviation, we name SOPE (sum of polynomials times exponentials) a function
like (1).

At the same time, but with much less detail, we point out how the proposed
approach can be extended to a much more general category of functions, with the
exponentials from (1) replaced by arbitrary, typically elementary, functions.

One important source of problems involving (1) is the modeling of random vari-
ables. If pi(t) are all nonnegative constants (κi = 0), then f(t) is the probability
density function (pdf) of a hyperexponential distribution, up to a proportionality
constant. If n = 1 and αi,j are nonnegative, then f(t) is the pdf of an Erlang mix-
ture. If n > 1 and αi,j are nonnegative, then f(t) is called a hyper-Erlang density. In
what follows, we do not impose nonnegativity conditions on the coefficients αi,j. As
a result, we will be able to find solutions of lower degree than competitor algorithms
which make that assumption.

There are three types of optimization problems involving (1) that we tackle.
They all involve SIP constraints having the form

f(t) ≥ 0, ∀t ∈ [t0, tf ], (2)

where typical choices are t0 = 0, tf =∞; however, it is enough to take a sufficiently
large tf instead of infinity, due to the decay properties of the exponential. For
simplicity of reference, we give ad hoc names to these problems and list them in
increasing order of difficulty.

Positivity check (SOPE-P). The simplest problem is: given a function (1), decide
if the inequality (2) holds. Such decision is necessary e.g. when checking if f(t) is a
pdf.

Convex constraint (SOPE-C). More interesting is the case when the parameters
of the function (1) are variables of an optimization problem. In particular, when
the polynomial coefficients αi,j are variable, but the exponents λi are given, the
constraint (2) is convex. This type of problem is our main focus. We will always
assume that the number n of exponentials and the degrees κi of the polynomials
are known. They could be selected using Information Theoretic Criteria, but this is
beyond the scope of this paper.

The problem on which we focus is fitting a pdf to empirical data. A random
variable is governed by an unknown pdf h(t); from empirical observations, we know
the values hm = h(tm) ≥ 0, for some times tm, m = 1 : M , usually equidistant.
Assuming that (1) is an appropriate model, we want to fit it to the data by solving
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the least squares problem

min J(f) =
1

M

M
∑

m=1

wm[f(tm)− hm]2

s.t. f(t) ≥ 0, ∀t ∈ [t0, tf ]

(3)

where wm > 0 are weights; we implicitly take wm = 1. If the exponents λi are
given, the problem (3) is an instance of convex SIP; its difficulty comes from the
infinite number of constraints hidden by the inequality (2). There is no simple way
to express it equivalently using a finite number of constraints, as would be the case
if f(t) was a polynomial.

With small modifications, the problem (3) can be posed not only for pdfs, but
also for cumulative density functions (cdf) or complementary cdfs, see later (35).

General constraint (SOPE-G). The most difficult problem is when the exponents
λi are also variable. In this case an optimization problem like (3) is no longer convex.
Although we will present a solution to this problem also, it will have no guarantee
of optimality.

An interesting particular case of the above problems is when κi = 0, hence the
polynomials are reduced to constants and so

f(t) =

n
∑

i=1

αie
−λit. (4)

The name of the problems will be changed accordingly, by replacing SOPE with
SOE (sum of exponentials).

1.2 Contribution and contents

The approach we propose is based on a polynomial approximation of the exponen-
tial function that allows the approximation of a SOPE-C problem like (3) by a
polynomial optimization problem. The latter may be reformulated via linear ma-
trix inequalities and hence solved efficiently with semidefinite programming (SDP)
methods in friendly media like CVX [10] and POS3POLY [24] or GloptiPoly [12].

We split the inequality (2) in K sub-intervals

[t0, tf ] =

K
⋃

k=1

[tk−1, tk] (5)

and impose positivity on each sub-interval. We compute polynomials b̂ik(t), b̌ik(t)
such that

b̂ik(t) ≥ e−λit ≥ b̌ik(t), ∀t ∈ [tk−1, tk]. (6)

Using such lower and upper approximations of the exponentials, we impose suffi-
cient positivity conditions on (1), simultaneously on all sub-intervals. The resulting
approximation of SOPE-C will be detailed in Section 2.

One-sided approximations like in (6) can be computed by solving a linear system,
using results from [3] (see also [6, 16]) reviewed in Section 3 and taking advantage
of the fact that the derivatives of the exponential have constant sign.
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It is intuitive that by playing with the degrees of the approximation polynomials
and the lengths of the sub-intervals, the approximation can be in principle as good
as desired, at the price of increased complexity. This is true not only for the expo-
nential, but for all smooth functions on a finite interval. Numerical accuracy is also
an important issue, especially since the approximating polynomials from (6) are de-
fined by their coefficients. Note that since we use the inequalities (6) to build a lower
approximation of f(t) which does not violate the positivity constraint, the quality
of the approximation should be comparable to the accuracy of the SDP algorithm
used for solving the transformed problem.

In a practical implementation, we have reached the conclusion that it is enough
to use relatively low degrees of the approximation polynomials, for example 8 or 10,
in order to reach a reasonable trade-off between accuracy and complexity. Given an
approximation accuracy, the computation of the sub-intervals from (5) is completely
automated, using a precomputed table of approximation errors, as described in
section 3.2.

Using this approach, we propose in Section 4 a complete iterative procedure for
solving the SOE-G and SOPE-G problems (3). In particular, we select initial values
for the exponents λi by searching sparse functions (1) whose exponents belong to
an arithmetic progression. For given exponents, the coefficients αi,j are optimized
using the polynomial approximation suggested above. Possibly better values of the
exponents are sought through a descent search, the coefficients are re-optimized, etc.

Although the procedure is based on simple ideas, the results given in Section 5
show that it is competitive, giving good results on several fitting problems studied
previously.

1.3 Previous work

The idea of using polynomial approximations in optimization is by no means new.
However, as far as we know, the particular combination of ideas that lies at the
foundation of our approach was not proposed. We present below a few relevant
works, pointing out the distinctive features of our method.

Most of the methods use a single polynomial for approximation on the whole
interval or on sub-intervals. A leading example is the library Chebfun [25], which
allows numerically-performed ”symbolic” computation by actually replacing given
functions with polynomials that approximate them to machine precision on the
interval of interest. However, due to numerical considerations, the polynomials
are not defined by their coefficients but by their values in Chebyshev nodes and
barycentric Lagrange interpolation is employed for computing the function values.
Hence, Chebfun can solve a problem like SOPE-P by computing the minimum of
the function, but is not able to take advantage of convexity.

In [5], functional optimization is performed by approximating the unknown func-
tion f(t) with a polynomial with unknown coefficients. It can be seen as a non-
parametric form of our problem, where the values of f(t) are sought for all t in some
interval. Here, we are interested in the parameters αi,j of a function with known
structure, hence our method is parametric.

A precursor of the above approach was presented in [4], where the minimum of a
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given function was obtained by computing instead the minimum of an interpolating
polynomial. Polynomial positivity, used for the minimum computation, is enforced
through SDP via interpolation [17].

In somewhat the same vein of non-parametric methods, but with pdf estimation
as specific target, functional approximation of a pdf with polynomials, fitting given
moments, is proposed in [13]. A simpler idea appeared in [23], proposing piecewise
polynomial approximations for pdfs, with no interest in optimization and no posi-
tivity enforcement. More refined approaches appeal to splines [14, 18, 1] (the latter
work summarizes previous work of its authors, including the use of multidimensional
splines); positivity is enforced with an ad hoc method in the first work, while in the
others it is imposed on each spline section via SDP.

One-sided polynomial approximations are less current; for example, in [22], they
were used for relaxation in a branch and bound process for global optimization. The
approximation regarded the optimization variables, not independent functions, like
here. Polynomial optimization was solved via linear programming.

There is also an entire body of literature dedicated to the estimation of the
parameters of a pdf, with diverse applications. Optimization is used more or less
explicitly, but usually in a relatively standard way. We cite only a few methods
connected to our work. SDP was used in [9] for estimating pdfs that are the product
between a polynomial and a kernel with few parameters, like the Erlang mixture;
polynomial positivity is imposed via SDP. In [7], the SOE-G problem is solved within
the class of exponents in arithmetic progression. However, the opportunity is missed
for transforming it into a polynomial positivity problem solvable by SDP; positivity
is imposed instead by rather ad hoc means. In the related work [8], we searched
in the more general class of exponents belonging to a sparse arithmetic progression,
and also used SDP to impose the SIP constraints. However, only SOE problems were
considered. In [21], matrix exponential distributions are estimated; after finding the
exponents with a method for linear systems identification, the coefficients are found
by optimization, positivity being ensured by a Budan-Fourier technique. Last but
not least, let us mention expectation maximization [2]; this produces solutions with
positive coefficients, which typically involve polynomials of higher degree.

2 Transformation to a polynomial problem

We discuss here the approximation of SOPE-C by an optimization problem with
polynomials, thus preserving convexity, but transforming the semi-infinite constraint
into a finite one.

Let us assume that the splitting (5) and the approximations (6) of the exponen-
tials are available. We show how to impose the positivity constraint (2) on a generic
sub-interval [tk−1, tk], keeping in mind that the conditions are imposed simultane-
ously on all sub-intervals.

2.1 Known signs

Assume first that the polynomials pi(t) have constant and known signs on [tk−1, tk].
This is usually possible only when solving SOPE-P, where pi(t) are fixed. Let I+ be
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the set of indices i for which pi(t) ≥ 0 on [tk−1, tk], and I− be defined similarly for
the negative case. In this situation, we can write

f(t) ≥
∑

i∈I+

pi(t)b̌ik(t) +
∑

i∈I
−

pi(t)b̂ik(t) = Pk(t). (7)

Since Pk(t) is a polynomial whose coefficients depend linearly on those of pi(t), im-
posing Pk(t) ≥ 0 on [tk−1, tk] is easy and can be inserted into any convex optimization
problem involving f(t). How to transform a polynomial positivity constraint into a
linear matrix inequality is discussed in [19]. However, such knowledge is not neces-
sary when using a library facilitating the manipulation of positive polynomials, like
POS3POLY.

2.2 Unknown signs

In general, the coefficients and the signs of pi(t) are not known, since the coefficients
of these polynomials are variables in the optimization problem SOPE-C. In this case,
it is impossible to build the approximation (7). However, we can replace it with

Pk(t) =
n
∑

i=1

[pi(t)− γik(t)]b̂ik(t) + γik(t)b̌ik(t), (8)

with the extra conditions

pi(t)− γik(t) ≤ 0, ∀t ∈ [tk−1, tk]
γik(t) ≥ 0,

(9)

where γik(t) is a polynomial, typically of the same degree as pi(t). If deg γik < deg pi,
then we can consider the alternative bounding polynomial

Pk(t) =

n
∑

i=1

γik(t)b̂ik(t) + [pi(t)− γik(t)]b̌ik(t), (10)

with the extra conditions

pi(t)− γik(t) ≥ 0, ∀t ∈ [tk−1, tk]
γik(t) ≤ 0.

(11)

If deg γik ≥ deg pi, then (8)-(9) and (10)-(11) are equivalent; otherwise, they are
different, but it is hard to give general rules for choosing one over the other. In
both cases, it is clear that f(t) ≥ Pk(t) and so Pk(t) ≥ 0 is a sufficient condition for
f(t) ≥ 0. From now on we will work only with (8)-(9).

So, the SOPE-C problem (3) is approximated with

min J(f)

s.t.
∑n

i=1[pi(t)− γik(t)]b̂ik(t) + γik(t)b̌ik(t) ≥ 0, ∀t ∈ [tk−1, tk], k = 1 : K
pi(t)− γik(t) ≤ 0
γik(t) ≥ 0

}

∀t ∈ [tk−1, tk], k = 1 : K, i = 1 : n

(12)
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Note that the objective is unchanged. The price for generality is the apparition of
the new variable polynomials γik(t) and of the new constraints (9). Although there
is a potentially large number of variable and constraints, namely nK, we will see
later that the degrees of all polynomials involved here are generally small, and also
the number K of sub-intervals is not large. So, the problem (12) does not have an
excessively high complexity.

Proposition 1 Denote Jo and Jγ the optimal value of the problems (3) and (12),
respectively. Let εik(t) ≥ 0, ∀t ∈ [tk−1, tk], be some fixed polynomials. Define

Pk,ε(t) =

n
∑

i=1

[pi(t)− γik(t)− εik(t)]b̂ik(t) + [γik(t) + εik(t)]b̌ik(t) (13)

and denote Jγ,ε the optimal value of (12), modified by Pk,ε(t) replacing Pk(t). Then,
the inequality Jo ≤ Jγ ≤ Jγ,ε holds.

Proof. Since γik(t) ≥ 0, εik(t) ≥ 0, ∀t ∈ [tk−1, tk], it results that Pk,ε(t) ≤
Pk(t) ≤ f(t) on [tk−1, tk]. Hence, the feasibility domain of the modified problem
(12) is included into that of (12), which in turn is included into that of (3). The
objectives of the three problems being the same and a larger feasibility domain
meaning the possibility of lower objective values, it follows that the inequality stated
by the Proposition holds.

Remark 1 The inequality Jo ≤ Jγ is a natural consequence of the approximation
(6). If there would be equality in (6), then (3) and (12) would be equivalent. By
reducing the lengths of the sub-intervals [tk−1, tk] the approximation in (6) becomes
better and so when K → ∞ (and the length of all sub-intervals tends to zero), the
solutions of (3) and (12) are the same.

Remark 2 The inequality Jγ ≤ Jγ,ε says that, when solving (12), the polynomials
γik(t) will generally tend to take their smallest possible values that are allowed by
the constraints (9).

So, if pi(t) ≤ 0, then it results that γik(t) = 0, and (assuming deg γik ≥ deg pi) if
pi(t) ≥ 0, then γik(t) = pi(t); the approximation (8) actually coincides (a posteriori,
after the optimization problem is solved and pi(t) is available) with that for known
signs (7). If pi(t) changes the sign on the current interval, then γik(t) is the best
upper approximation to max(pi(t), 0).

The above values of γik(t) are reached only if the constraint Pk(t) ≥ 0 is active
on the interval [tk−1, tk]. However, the important conclusion is that the construction
(8)-(9) naturally gives the best lower approximation of f(t) by a polynomial Pk(t),
given the bounding polynomials (6).

3 One-sided polynomial approximations of a set of ex-

ponentials

We present here the tools for finding the polynomial approximation (6) and the
intervals (5) for a set of exponentials e−λit, i = 1 : n. We also suggest how this can
be done for other functions.
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3.1 Approximation of a single exponential

We start by showing how to find lower and upper polynomial approximations to
a single exponential e−λt on an interval [τ0, τ1]. This is achieved via [3, Th.4],
taking advantage of the fact that the derivatives of all orders of the exponential
have constant sign.

We present in detail only one case, that of the lower approximation b̌(t) of odd
degree ν = 2ℓ− 1, to a function φ(t) whose derivative of order ν + 1 is nonnegative
on [τ0, τ1] (which is the case of our exponential). The approximation is optimal in
the sense that the norm

∫ τ1

τ0

w(t)[φ(t) − b̌(t)]dt (14)

is minimized, where w(t) is a weight function. Denote by x1, . . . , xℓ the zeros of
the ℓ-th order polynomial from the sequence of polynomials which are orthogonal on
[τ0, τ1] with respect to w(t). Then, the coefficients of b̌(t) can be found by solving
the linear system given by the equations

b̌(xk) = φ(xk), b̌′(xk) = φ′(xk), k = 1 : ℓ. (15)

So, if the zeros of w(t) are readily available, then the computation of b̌(t) is very
simple and effective.

The other cases, corresponding to the three other combinations of the parity of
ν and the sign of the ν + 1-th derivative of φ(t) are similar, but involve the zeros of
the polynomials that are orthogonal with respect to (t − τ0)w(t), (τ1 − t)w(t) and
(t− τ0)(τ1 − t)w(t), respectively, and one or both of the interval ends.

For the sake of quick computation, we choose the weight w(t) =
√

(τ1 − t)(t− τ0),
which generates Chebyshev polynomials of the first kind. Their roots are

xk =
τ1 − τ0

2
cos

(2k − 1)π

2ℓ
+

τ1 + τ0
2

, k = 1 : ℓ. (16)

(The other three weights above generate Chebyshev polynomials of the second kind
and Jacobi (−1

2 ,
1
2 ) and (12 ,−1

2) polynomials, whose roots are also availabe via simple
formulas.)

Example 3 To have an idea of the approximation error, we plot in Figure 1 the
maximum value of b̂(t)−e−t and e−t− b̌(t) for several degrees of the polynomial and
intervals starting from 0 and ending in various points up to 5. One can see that,
for example, a polynomial of degree 8 gives an error smaller than 10−10 for intervals
included in [0, 1.1]. The approximation becomes unreliable when the approximation
error approaches 10−16, in the sense that it may be no longer one-sided. However,
errors of order 10−12 appear perfectly obtainable.

Although the infinity norm is preferable to an integral norm like (14), if the
minimization of the maximum approximation error is desired, the computation of
such a norm would involve a Remez-like algorithm which significantly increases
the computation time with relatively small benefits (at least in the case of the
exponential and our choices of intervals).
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Figure 1: One-sided polynomial approximation error for e−t. Left: for various
degrees on the interval [0, 1]. Right: for degree 8 and intervals from 0 to the value
on the horizontal axis.

An alternative to the above construction was employed in [22] and works for gen-
eral functions, not only in the restrictive conditions from [3]. Using a grid like (16),
one builds Chebyshev interpolation polynomials, for whom an approximation error
bound is available. Subtracting or adding the bound value to the polynomial gives
lower or upper one-sided approximations. A more refined approach [20], based on
a sound numerical implementation of the Remez algorithm, can give nearly optimal
solutions.

3.2 Approximations of a set of exponentials

We go now to our full problem: the approximation of a set of exponentials on a union
of intervals. We assume a target approximation error ǫ. Given the exponentials e−λit,
i = 1 : n, the problem is how to find the intervals (5) and the degrees νik of the
polynomials (6) such that

maxt∈[tk−1,tk] |b̂ik(t)− e−λit| ≤ ǫ,

maxt∈[tk−1,tk] |e−λit − b̌ik(t)| ≤ ǫ,
∀i = 1 : n, ∀k = 1 : K. (17)

The solution is obviously not unique, but we aim to find one that is computationally
advantageous. The exponential function allows a very cheap solution.

Remark 4 Assume that the maximum approximation error of a polynomial of de-
gree ν approximating e−t on the interval [0, τ ] is ε. Then, there exist polynomials
of degree ν such that:

• e−λt is approximated on [0, τ/λ] with error at most ε;

• e−t is approximated on [x, x+ τ ] with error at most εe−x.

Combining these two results, it follows that e−λt is approximated on [x, x+ τ/λ]
with error at most εe−λx.
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Example 5 Let us put the problem differently. We take ǫ = 10−10 and ν = 8.
We want to approximate e−3t on an interval [1, 1 + θ] as large as possible, with
approximation error less than ǫ. From the above Remark, the error for e−t on [0, 3θ]
should be less than e3ǫ ≈ 2 · 10−9. Looking in Figure 1 (right), we see that this
happens for 3θ ≈ 1.6. Indeed, taking θ = 0.55 gives the desired accuracy.

The approximation procedure we propose is as follows. Besides the input data
listed in the beginning of this section, we assume that a maximum degree νmax is
given.

1. We make a table T (τ, ν) of approximation errors given by polynomials built
as described in this section for approximating e−t on [0, τ ]. The errors are measured
on a grid; there can be a few tens of τ values and ν can go from 0 to 10 or 12. (The
result would be a ”cartesian product” of the two graphs from Figure 1.) This table,
having a few hundred entries, is built a single time. Even so, the computation time
for a 50× 12 table was only 0.25 seconds on a standard desktop, which is negligible.

2. Assume that we have found tk−1 and we search tk. For each λi, using the
table and Remark 4, we find the interval length dik such that the approximation
error for e−λit on [tk−1, tk−1 + dik] is at most ǫ. More precisely, we seek in the table
the value τ for which T (τ, νmax) has the largest value smaller than ǫ · eλitk−1 and
set dik = τ/λi. Finally, to ensure that the approximation error is respected for all
exponentials, we take the smallest interval length and put tk = tk−1 +mini=1:n dik.
This iterative procedure, ending when tk ≥ tf , is extremely fast since it involves
only table searches.

For the sake of numerical accuracy, we optionally can reduce the degrees of the
approximating polynomials for the exponentials that are not deciding the length
of an interval. (Note that the highest degree of a polynomial actually decides the
complexity.) Denoting dk = tk − tk−1, for each i for which dik > dk we search in the
table the smallest degree νik for which T (τ̃ , ν)eλiτk−1 is smaller than ǫ, where τ̃ is
the smallest grid value larger than dk/λi. Remark 4 ensures that the error made by
approximating e−λit on [tk−1, tk] with a polynomial of degree νik is at most ǫ.

Example 6 Let us approximate the exponentials with exponents 0.3, 1 and 3 on the
interval [0, 10], with error less then ǫ = 10−10, using polynomials of degree at most
νmax = 8. The table is built with step value 0.2 for τ . Using the above procedure, we
find that 10 sub-intervals are necessary. The first is [0, 0.33], on which the degrees
of the approximating polynomials are 5, 6 and 8; the fastest decaying exponential
naturally needs the highest degree. The last sub-interval is [9.27, 10] and the degrees
are 6, 5 and 1. They are smaller than νmax because the sub-interval is cut short by
tf = 10; for example, the previous sub-interval is [6.67, 9.27]; since the exponentials
are decaying, the sub-intervals are longer as t grows. Note that now the slowest
exponential sets the degree; the fastest has almost vanished.

Also for improving numerical accuracy, it is useful to move the approximation
on an interval centered in the origin. Similarly to a Vandermonde system, the linear
system (15) tends to become ill-conditioned when the roots (16) have all the same
sign and large absolute value. So, denoting θk = tk−1+dk/2, instead of working with
pi(t)e

−λit for t ∈ [tk−1, tk], we work with pi(t+ θk)e
−λiθke−λit for t ∈ [−dk/2, dk/2].
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Since usually the degree κi of pi(t) is small, the bad numerical effect of computing the
coefficients of pi(t+ θk) (as a polynomial in t) is much smaller than the reduction of
the condition number of the system solved for approximating e−λit on [−dk/2, dk/2].

It is clear that the above procedure is particularly fit for the exponential function.
For other functions, the polynomial approximations must be computed explicitly for
each sub-interval, in a trial-and-error procedure for finding the right polynomial de-
grees and the sub-intervals lengths; this is essentially what Chebfun does, but in our
case more flexibility is allowed since we do not (and cannot) aim to approximation
within machine precision.

It is also obvious that imposing an approximation error ǫ for each exponential,
does not make the approximation error in (2) be of the same size. However, an a
posteriori analysis of the function f(t), in particular of the values of the computed
polynomials pi(t), can help estimate the actual error. A single new run with a
smaller ǫ would be required, since the new optimized function should be near the
previous one and hence the worst-case accuracy becomes predictable.

4 Fitting an empirical density

Let us now come back to our prototype problem (3) of fitting an empirical density
and consider first the simpler SOE case (4). We start by studying a helpful particular
case.

4.1 Exponents in arithmetic progression

Let us assume that the exponents are known and form an arithmetic progression,
meaning that

λi = λ1 + (i− 1)q, i = 1 : n, (18)

where q > 0 is the ratio. In this case, the function (4) has the form

f(t) = e−λ1t
n
∑

i=1

αie
−(i−1)qt. (19)

Denoting x = e−qt, the condition (2) becomes

n
∑

i=1

αix
i−1 ≥ 0, ∀x ∈ [e−qtf , e−qt0 ]. (20)

This is a polynomial positivity condition, easy to impose through LMIs [19]. Hence
the SOPE-C problem (3) is equivalent to an SDP problem. No approximation is
required, the problem is naturally polynomial.

The method from [7] works with models based on the progression (18) and trans-
forms f(t) into a polynomial as above. However, positivity is imposed by quite
rudimentary means (fitting a SOE to the square root of the target pdf, then squar-
ing, which gives also a SOE, but with more terms). Moreover, the values λ1 and q
defining the arithmetic progression are found by just trying different values until a
satisfying result is obtained.

11



4.2 An algorithm for the SOE-G problem

The arithmetic progression case can be used for initialization in an iterative pro-
cedure for the general problem SOE-G. The iterative part uses the polynomial ap-
proximation described in Sections 2 and 3.

1. Initialization using sparse arithmetic progression. Let us assume that an
estimate λ̃1 of λ1 is available. This can be obtained like in [21], using the tail of h(t);
for large values of t, the slowest exponential dominates the others. Alternatively, we
can just take λ̃1 sufficiently small, since it is enough to have λ̃1 < λ1.

We then attempt to solve SOE-G by making a more general assumption than
in Section 4.1 and searching exponents estimations λ̃i that belong to an arithmetic
progression

λ̃i = λ̃1 + µiq, (21)

where µi are unknown positive integers.
To this purpose, we work with the function

f̃(t) =
N
∑

i=0

α̃ie
−(λ̃1+qi)t = e−λ̃1t

N
∑

i=0

α̃ie
−qit, (22)

with given q and N . In principle, q should be small enough to cover decently
well the possible intervals where the exponents lie and N should be as large as
computationally acceptable (e.g. 100 is certainly good, but one can consider going
to 200 and even beyond). Since we seek a sparse solution, with only n nonzero
coefficients α̃i, we modify the problem (3) by adding a sparsity-promoting term to
the objective and transforming it into

min J(f̃) + β
∑N

i=0̟i|α̃i|
s.t. f̃(t) ≥ 0, ∀t ∈ [0,∞)

(23)

where β and ̟i, i = 0 : N , are weighting constants. The second term of the
objective is a weighted 1-norm of the coefficients vector α̃i, denoted ‖α̃‖̟,1; the
most meaningful choice appears to be ̟i = 1/λ̃i, which takes into account that
∫

∞

0 e−λt = 1/λ and thus implicitly normalizes the exponentials from (4).
The problem (23) is convex in the coefficients α̃i. The positivity constraint can be

expressed as the positivity of a polynomial f̃(x) on [0, 1], by substituting x = e−qt as
in Section 4.1. If the constant β is large enough, many of the coefficients α̃i are small
and only few have significant values. We take the largest n of them (in weighted
absolute value ̟i|α̃i|) and the corresponding λi are given by their positions.

We can then re-solve (23) by imposing that only the chosen n coefficients are
nonzero, finding thus the optimal coefficients αi for the selected λi (this can have
the advantage of exact positivity constraint via polynomials, but can be skipped by
going directly to the iterative step).

The problem (23) could be replaced with a minimization of ‖α̃‖̟,1 with a
bounded J(f̃); in this case, the bound should be chosen instead of β; this may
make more sense if some value of the objective is already available.

2. Iterative part. With the above initialization, we can start the iterative part of
the algorithm, where the coefficients and the exponents are optimized alternatively.
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For given exponents λi, we optimize the coefficients αi by solving the approxi-
mation (12) of the SOE-C problem (3), as shown in Sections 2 and 3. The auxiliary
variables γik(t) are just scalars.

For optimizing the exponents λi we attempt small gradient steps. The gradient
is

∂J(f)

∂λi
= −2αi

M

M
∑

m=1

wmtm[f(tm)− hm]e−λitm . (24)

The step size is ς, so the new values of the exponents are

λi ← λi − ς
∂J(f)

∂λi
. (25)

(If the resulting λi would become negative, we reduce the step size such that they
stay positive.) Then, the SOE-C problem is (approximately) solved with the new
exponents λi. If the value of the objective does not decrease, we restore the previous
exponents, halve the step size ς and recompute (25). Note that by modifying λi we
usually improve the objective but may go out of the positivity domain. Solving (12)
means returning back to it, but not necessarily with a better objective value.

The iterations continue as long as the improvement is significant or the step
size is not very small. Of course, there is no guarantee of optimality, but our main
purpose is to illustrate the kernel of our approach—the polynomial approximation
idea. Even with such a simple descent procedure, the results are satisfactory in the
test problems we will report in Section 5.

4.3 Extension to SOPE

The iterative part of the above procedure can be used for true SOPE functions (1),
with some κi > 0, with the minor change of the gradient expression (24) into

∂J(f)

∂λi
= − 2

M

M
∑

m=1

wmtmpi(tm)[f(tm)− hm]e−λitm . (26)

However, the arithmetic progression trick used in the SOE case is no more pos-
sible, since the transformation x = e−qt no longer leads to a polynomial. Instead,
we simply use the exponents resulting from a SOE solution (not necessarily fully
optimized) as initialization for the SOPE problem. As confirmed by numerical evi-
dence, this seems effective especially when the polynomials degrees κi from (1) are
small.

5 Numerical results

The polynomial approximation method described in this paper has been imple-
mented using POS3POLY [24] for CVX [10] and can be downloaded from http:

//www.schur.pub.ro/sope, together with the programs solving the problems pre-
sented in this section. The simplest description of the constraint (2), with a SOE
function (4) characterized by the variable vector of coefficients alpha and the con-
stant vector of exponents lambda is
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alpha == pos_soe( lambda, t0, tf );

where t0 and tf are the positivity interval ends. This is consistent with CVX style
and the parameters of the approximation are hidden, although the user can control
them if so desired.

We start illustrating the behavior of our method by solving a problem proposed
in [21], that is slightly different in nature from (3), but finally has the same form.

Example 7 Unlike an empirical pdf, the SOE

h(t) = 16e−
t
2 − 30e−t + 15e−2t (27)

has also negative values. We want to find the nearest positive SOE (4) to h(t), by
minimizing

J(f) =

∫

∞

0
[f(t)− h(t)]2dt. (28)

This objective is convex quadratic in αi, like (3), but is rational in λi. The expression
of the gradient with respect to λi is omitted here, for brevity, but easy to obtain.

Using the tail of h(t) like in [21], the smallest exponent estimation is λ̃1 = 0.4873.
With q = 0.01, N = 100 and β = 0.0005 in (22–23), the initialization step of our
algorithm gives λ1 = 0.5073, λ2 = 1.0773, λ3 = 1.4873 and an objective value
J = 0.0433. Positivity is imposed on the interval [0, 10], which is large enough to
ensure it on [0,∞].

The iterative step improves it to J = 0.0425, the result being

f(t) = 19.91e−0.5315t − 48.63e−1.0264t + 29.66e−1.5177t . (29)

Figure 2 presents the graph of this function and of the target h(t). The whole design,
containing 30 iterations, took less than 1 minute on a standard desktop computer.
The polynomial approximations of the exponentials were made with νmax = 8 and
ǫ = 10−8. The minimum value of the SOE (29), computed on a very fine grid, is
3.5 · 10−7. Taking a smaller ǫ reduces this value only if the accuracy of the SDP
solver is also increased. For example, setting cvx precision best (which means
that CVX iterates as long as the objective can be decreased without numerical
trouble), a value of ǫ = 10−12 (which is still safe for the polynomial approximation)
leads to a minimum of the SOE of 3.6 · 10−11.

In the above case, the initialization step already gave a good result. However,
the iterative step can significantly decrease the objective if the approximation is
poor. For example, with q = 0.03, the initialization step gives J = 0.2227 and the
final result is J = 0.0439.

Solving the SOE-C problem with the exponents from (27) kept fixed, the optimal
objective is 0.0712. The same value is given by a dedicated algorithm that takes
into account that the exponents are actually part of an arithmetic progression and
imposes positivity via polynomials; the resulting optimal SOE, whose graph is also
shown in Figure 2, is

f(t) = 15.5243e−
t
2 − 28.5073e−t + 14.2410e−2t . (30)
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Figure 2: Graphs of the functions from Example 7. Blue: target h(t) (27). Red: our
best approximation (29). Black, dashed: best approximation (30), with the same
exponents as h(t).

The result reported in [21] is

f(t) = 16e−
t
2 − 29.946e−t + 15.5385e−2t . (31)

Somewhat surprisingly, the corresponding objective is J = 0.0933.

Many methods in the literature are tested using standard densities, and our next
two examples will be of this type. Given a continuous pdf h(t), we simply discretize
it on M = 100 equidistant values in the interval [0, tf ] and optimize the objective
(3) through the approximation (12). The values νmax = 8 and ǫ = 10−8 are kept
throughout the rest of the paper. The other parameters may change values, but we
will not report them, since they can be found in the Matlab files.

Example 8 We discuss in detail the example W1 from [11], where the target is the
Weibull pdf

h(t) =
k

η

(

t

η

)k−1

e(−t/η)k , (32)

with η = 1, k = 1.5. We approximate it with a SOE with n = 4 terms on the
interval [0, 5]. The solution

f(t) = 130.12e−2.7535t − 329.39e−3.1707t + 228.96e−3.5850t − 29.665e−4.7543t (33)

gives J = 4.82 · 10−5. The result is illustrated in Figure 3, together with the best
4-term SOE reported in [11] (where the approximation is made on the Laplace
transform), for which the objective is only J = 5.90 · 10−4. Also, our result is
visually similar to the order six model from [2, Fig. 2].

For other examples from [11] involving the Weibull and lognormal distribution,
where we could compare the solutions only graphically (since the result was given
only in this form), we have obtained better results with the same number of ex-
ponentials or similar results with fewer exponentials. Note also that the method

15



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

f
(t
)

 

 

target
best SOE
HM

Figure 3: Graphs of the functions from Example 8. Blue: target h(t) (32). Red: our
best approximation (33). Black, dashed: the approximation from [11].

from [11] allows complex values for the exponents; however, for example W1 the
exponents were real.

Example 9 We turn now to some examples from [7], where the complementary
cumulative density function (ccdf)

H(t) =

∫

∞

t
h(τ)dτ (34)

was used instead of the pdf h(t) and modeled with a SOE (4). However, since the
derivative of a SOE F (t) is also a SOE f(t), we have solved a problem very similar
to (3), namely

min J(F ) =
1

M

M
∑

m=1

wm[F (tm)−Hm]2

s.t. f(t) ≥ 0, ∀t ∈ [t0, tf ]
F ′(t) = −f(t)
F (t0) = 1, F (tf ) ≥ 0

(35)

The last two constraints, that do not appear in (3), are linear in the coefficients
of the SOE and hence the algorithms described in this paper can be immediately
adapted.

The two ccdf discussed in this example are those of the Pareto

H(t) =
1

1 + t
(36)

and lognormal

H(t) = 1− 1

2
erfc

(

− log (t− µ)

σ
√
2

)

(37)

distributions. For the lognormal, the parameters are µ = 0, σ = 0.5. The intervals
on which optimization is performed are [0, 20] for Pareto and [0, 6] for the lognormal.
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Target Approximation n
ccdf 3 5 11 21

[7], LS optimal 1.84 · 10−2 5.02 · 10−4 1.40 · 10−6 1.52 · 10−8

Pareto Our SOE 1.28 · 10−4 2.36 · 10−5 1.73 · 10−6 3.42 · 10−9

Our SOPE 2.87 · 10−6 1.27 · 10−7 1.33 · 10−6 4.73 · 10−9

[7], LS optimal 8.97 · 10−3 1.86 · 10−3 3.01 · 10−6 4.50 · 10−7

lognormal Our SOE 1.39 · 10−3 6.68 · 10−5 3.83 · 10−6 3.75 · 10−6

Our SOPE 1.29 · 10−4 7.14 · 10−6 4.00 · 10−6 5.26 · 10−6

Table 1: Values of the objective (35) for Example 9.

We present in Table 1 the values of the objective (35) for several values of the
number n of exponentials and three methods. The first is an optimized version
of the method from [7], which used exponents in arithmetic progression. The first
exponent and the progression ratio were found by trial and error; we use the same
values as reported there. In [7], the SOE is approximated using Jacobi polynomials,
but with no explicit optimization. We use instead the exact optimization method
sketched in section 4.1. Hence we obtain better results than those reported in [7].
(Note that the maximum error is reported in [7], while we optimize an LS objective
and still get better maximum error.)

The other two methods are ours. In addition to SOE, we report now also some
results for SOPE models. The values shown in Table 1 are obtained with degrees
κi = 1, i = 1 : n, in (1). For Pareto, when comparing the number κ = n +

∑n
i=1 κi

of coefficients αi,j, the SOPE model is sometimes more efficient than SOE. For
example, the objective for SOPE with n = 5 and hence κ = 10 is smaller than that
for SOE with n = κ = 11. Also, if we take κ = 5 via κ1 = 0, κ2 = κ3 = 1, the
objective is J = 5.53 · 10−6, smaller than the value for SOE and n = 5. For the
lognormal (as well as for the previous examples, where SOPE was not mentioned),
SOE appears more adequate than SOPE.

Comparing now our SOE method with the least-squares optimal version of the
method from [7], we notice two distinct behaviors. For small n, our method is
significantly better, showing that the search for good exponents is successful and
that using an arithmetic progression may be quite restrictive. However, for larger
n, the methods give comparable results. Now the arithmetic progression seems a
satisfactory model. Numerical accuracy properties of the SDP solver may also come
into play, since the fit is actually very good and the values of the objective very
small. Finally, we note that our method, by its nature, targets small values of n,
where the parameters of the model may have a significance. Taking exponents in a
long arithmetic progression resembles more what was called non-parametric method
in the introduction.

Example 10 We fit now SOE and SOPE models to data belonging to a popular
time series, the eruption durations of the Old Faithful geyser. The problem is
notoriously difficult since the pdf appears to have two disjoint intervals as support.
There are 272 values in the series, which are grouped into M = 40 equally spaced
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Figure 4: Graphs of the functions from Example 10.

bins and shifted towards the origin with 1.6 minutes, which is the smallest duration
of an eruption. Figure 4 shows the resulting histogram and two approximations
with κ = 6 parameters, a SOE with n = 6 and a SOPE with n = 4 and κ1 = 0,
κ2 = κ3 = 1, κ4 = 0. The optimization is performed on the interval [0, 10]; zero
values are appended to the histogram for times greater than the longer duration.
The values of the objective are 0.0112 for SOE and 0.0104 for SOPE, so again the
SOPE model is more appropriate. The first peak of the data and the valley are quite
well followed, while the approximation is worse for the second peak.

A visual comparison with Fig. 4b from [15] shows that our models with only 6
parameters have a better fit than some (older) methods with order 10 models and
are only slightly worse than the model proposed in [15]. All the models investigated
there are more general than SOPE. Anyway, our purpose in this example is not to
prove that SOPE is a good model for the Old Faithful data, but that our method is
flexible enough to give reasonably good results in this case. Better approximation
of the data can be obtained by shortening the optimization interval, but then, like
in [15], the pdf is not strictly decreasing after the second peak, but has a third small
peak.

6 Conclusion and future work

We have presented a method for solving SIP problems with inequality constraints
involving functions (1) that are a sums of exponentials multiplied with polynomials
with variable coefficients. The method is based on one-sided polynomial approxima-
tions of the exponentials on sub-intervals, which allow transformation of SIP into
SDP and hence reliable computation of near-optimal solutions that are guaranteed
to respect the constraints. We showed through several examples that our method
is computationally attractive and gives good results compared to methods based on
different principles.

Future work will be dedicated to the investigation of approximations for other
functions. The exponential has properties that allowed us several tricks easing the
computation of the polynomial approximation. Extension to general functions is not
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trivial, but is certainly possible. When implemented for more general categories of
functions, our method could be seen as a possible meeting point between CVX and
Chebfun, by extending CVX to SIP, using polynomial approximations like Chebfun
and having a simple modus operandi like both of them.
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[24] B. Şicleru and B. Dumitrescu, POS3POLY – a MATLAB Preprocessor for Op-
timization with Positive Polynomials, Optimization and Engineering 14 (2013),
pp. 251–273.

[25] L.N. Trefethen, et al., Chebfun Version 4.2, The Chebfun Development Team
(2011), http://www.maths.ox.ac.uk/chebfun/.

20


