
CLUSTERING BEFORE TRAINING LARGE DATASETS - CASE STUDY: K-SVD

Cristian Rusu

“Politehnica” University of Bucharest
Department of Automatic Control and Computers

Spl. Independenţei 313, Bucharest 060042, Romania (e-mail: cristian.rusu@schur.pub.ro)

ABSTRACT
Training and using overcomplete dictionaries has been the
subject of many developments in the area of signal process-
ing and sparse representations. The main idea is to train a
dictionary that is able to achieve good sparse representations
of the items contained in a given dataset. The most popular
approach is the K-SVD algorithm. In this paper we study the
application of K-SVD for large datasets. The main interest is
to speedup the training procedure while keeping the represen-
tation error close to some specific values. The goal is reached
by using a clustering procedure, called here T-mindot, which
reduces the size of the dataset but keeps the most representa-
tive data items. Experimental simulations compare the run-
ning times and representation errors of the training with and
without the clustering procedure and they clearly show how
effective T-mindot is.

Index Terms— sparse representations, clustering, k-svd.

1. INTRODUCTION

The field of sparse representations [1] has enjoyed increased
popularity in recent years mainly due to the theoretical devel-
opments [2] [3] and the large class of applications where it is
used [4] [5]. Now, the focus remains on two central problems
of the field: given a signal a ∈ Rn find its sparse (or sparsest)
representation in a given base D ∈ Rn×d called dictionary;
and given a whole dataset A ∈ Rn×N find a dictionary in
which the data items have a good sparse approximate repre-
sentation.

To solve the first class of problems, algorithms like the or-
thogonal matching pursuit (OMP) [6] were developed. This
is a greedy approach that builds a representation by picking,
in an iterative procedure, the item of the dictionary that re-
duces the representation error. Due to its simplicity and with
an efficient implementation [7], OMP is a very fast algorithm.
For the second class of problems, the most popular and effec-
tive method is the K-SVD algorithm [8] [9]. This is also an

This work was supported by the Romanian National Authority for Sci-
entific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-
0400 and by the Sectoral Operational Programme Human Resources Devel-
opment 2007-2013 of the Romanian Ministry of Labour, Family and Social
Protection through the Financial Agreement POSDRU/88 /1.5/S/61178.

iterative procedure that uses OMP to build the representations
of the data items and then the SVD to update the dictionary
columns such that the overall mean squared error is reduced.
Because of this structure, the K-SVD is relatively slow when
applied for large datasets. We address this issue by substan-
tially reducing the dataset in such a way that we keep its basic
structure. The K-SVD runs on the reduced dataset and the
running time and representation error are both compared with
the application of K-SVD on the full dataset.

In the field of machine learning, in the context of super-
vised learning, reduction techniques using exemplar-based al-
gorithms [10] have been used to reduce the memory consump-
tion, speedup the training procedures and reduce the sensitiv-
ity to noise. From this class of methods we mention here
the nearest neighbor algorithm [11] and case-based reasoning
[12].

The paper is organized as follows: Section 2 describes
the proposed clustering procedure, called T-mindot, Section 3
presents the experimental results obtained on various datasets
and Section 4 concludes the paper.

2. THE PROPOSED CLUSTERING PROCEDURE

The goal of this paper is to present a clustering procedure that
takes place before applying the K-SVD algorithm in order to
reduce the size of the training set and consequently to reduce
the running time of K-SVD.

This approach is determined by the practical need to have
the K-SVD algorithm run fast even when the training set is
very large (contains at least a few tens of thousands of items).
In this research direction we can find for example the approx-
imate K-SVD (AK-SVD) [7] algorithm, in which the whole
SVD step is replaced by few iterations of the power method.
The proposed clustering procedure is inspired by the observa-
tion that the AK-SVD algorithm produces very good results
even though the power method step runs for only one iteration
(the whole SVD step is replace by a few matrix multiplica-
tions).

We conclude that K-SVD can provide good results even
if it is provided with a rough approximation of the general
direction in which the training samples group.

In this case, the first idea that comes to mind is to clus-
ter the training samples by a proximity measure, taken here
to be the absolute value of the normalized dot product, such
that the general direction is kept but the number of data sam-
ples is greatly reduced. In such a context, the k-means clus-
tering procedure [13] could be used. We employ a similar
strategy but, in our case, we fix the maximum allowed dis-
tance between the training samples and any of the centroids
such that similar data items can be replaced with a single rep-
resentative centroid. When none of the current centroids can
provide such a distance to an item, we increase the number
of centroids by adding the new training sample to the set of
centroids.

Given the training samples ai ∈ Rn,∀i = 1, . . . , N with
||ai||2 = 1 and the maximum allowed distance between the
centroids and their clustered items T , the ouput of the clus-
tering procedure is the centroid set K = {bj}, j = 1, . . . ,M
with M � N and the general formulation of the optimization
problem is given by

minimize
bj

M

subject to |aT
i bj | ≥ T, ∀i, for at least one j

||bj ||2 = 1.

(1)

Since this is not a convex optimization problem, we de-
velop a heuristic that finds a feasible solution that is able to
reach, in the general case, a conveniently small M in a rea-
sonable amount of time. Thus, the heuristic has to balance a
compromise between the running speed of the algorithm and
the quality of the solution found.

The proposed clustering procedure, called T-mindot, is
presented in Table 1.

The input matrix A contains the normalized training vec-
tors columnwise concatenated.

The initialization step sets: the centroid set K contain-
ing the first training vector a1, the frequency vector f = 1
that keeps track of how many training vectors each centroid
clusters, the parameter S that decides the dimension of the
working blocks, Smax the upper bound of the dimension of
blocks imposed mainly because of memory limitations and
two parameters Dfast and Dslow that control the speed of the
procedure with respect to the dimensions of the data blocks.

The goal of T-mindot is to reduce the dimension of the
dataset by replacing data items that are close with only one
representative item whose weight is proportional to the num-
ber of items it clusters. Since computing all the dot products
between all the data items is too time consuming, this is done
by computing dot products between the current set of cen-
troids and a subset of size S of the yet unclustered data items.

In order to speedup the running time of the algorithm
some operations are done in bulk. For example, the compu-
tation of the dot products in step (c) is done efficiently with
a matrix-matrix multiplication whose dimensions depend on
the parameter S.

Table 1: General overview of the T-mindot clustering proce-
dure

Input: A ∈ Rn×N - training matrix
T ∈ R, 0� T < 1 - the maximum allowed
error (minimum dot product)

Initialization: K - set of centroids
f - number of items clustered by each
centroid
S - current working dimensions
Smax - maximum working dimensions
Dfast - control of fast dynamic
Dslow - control of slow dynamic

Procedure:

1. while (training set is not empty)

(a) S = min{S, Smax}
(b) extract set W of size S with training vectors

from the training matrix A

(c) compute the distances between the extracted
vectors and the centroids in K

(d) for each training vector ai ∈ W that has a
centroid cj such that |aT

i cj | ≥ T

i. add ai to the set of vectors clustered by
cj and eliminate them from W

ii. fj = fj + 1

(e) if more than 5% of vectors are not clustered
after the previous step then S = dS×Dslowe,
else S = dS ×Dfaste

(f) while (W 6= ∅)
i. find ai ∈ W that groups around it the

most training samples from W
ii. remove ai and its grouping from W and

add it as new centroid

2. for each centroid cj ∈ K

(a) compute new cj to be the average of the vec-
tors ai clustered by cj

(b) normalize new centroid

Output : C ∈ Rn×M - matrix with centroids
columnwise concatenated
f ∈ RM - number of vectors clustered by
each centroid

If a large percentage (over 95%) of the training vectors
find a centroid in step (d) then we are encouraged to increase
the current working size S since all computations are done in
bulk and are thus more efficient. If not, then the dot products
computed are useless and the training vectors are dealt with
in step (f). The issue is that step (f) is much slower than steps
(c) and (d) because it has to take care of the remaining train-
ing vectors one by one. Varying the value of S we balance
the two steps and we try to make sure that: useful computa-
tions are done in bulk in step (d) and we reduce the number of
items that end up in step (f). For a given T , the quality of the
solution is measured by the difference P = N −M ≥ 0. The
smaller the number of clusters M , the bigger the difference
and thus the better the clustering method is.

The values of Dfast = 1.1, Dslow = 0.9, the current work-
ing block size S = max{b0.01 × Nc, 500}, the maximum
working block size Smax = max{b0.02×Nc, 2000} and the
5% limit that decides whether the algorithm employs a fast
or slow dynamic were chosen after a set of experimental runs
on large datasets were conducted. These parameters seem to
best balance between the running speed and the performance
of clustering.

The second step of T-mindot centers every centroid in its
training samples group in order to reduce the average error, al-
lowing for the possibility that the dot products may be lower
than T (which happens in only a small fraction of cases). Ex-
periments show that this centering step helps improve the rep-
resentation errors.

The output of T-mindot, the matrix C and the vector f , is
used in all experimental runs of K-SVD. The initial training
dataset is replaced by a new training matrix consisting of the
weighted centroids. This new training matrix should be con-
siderably smaller than the initial one and provide a significant
speedup while the weights ensure that the dictionary behaves
well also against the original training dataset by providing a
small representation error. Applying the training procedure
on the centroids weighted by the square root of the number of
items they cluster is equivalent (from the SVD point of view)
to applying the training procedure on a dataset consisting of
the repeated (as many time as the number of items they clus-
ters) centroids.

This arrangement leads to the important speedup and the
low representation error in the original dataset.

3. EXPERIMENTAL RESULTS

Next, we present a set of results obtained in two circum-
stances using T-mindot before the application of the AK-SVD
algorithm.

In the first setting, the AK-SVD algorithm is applied on a
large set of vectors that contain features (linear predictive cod-
ing coefficients [14]) extracted from audio signals. As source,
the publicly available ISMIR 2004 [15] audio database was
used. The audio signals are partitioned in windows of 3000

Table 2: Dimensions of the audio training sets

training set set dimension (N)
classical 245498
electronic 100215
jazz-blues 22747
metal-punk 38524
rock-pop 86050
world 105802

Table 3: Frobenius norms of the audio representation error
matrices

AK-SVD T-mindot + AK-SVD (+cut)
training set - T = 0.95 T = 0.9
classical 251 252 (253) 252 (252)
electronic 150 150 (154) 151 (151)
jazz-blues 69 70 (75) 70 (72)
metal-punk 85 85 (92) 86 (87)
rock-pop 148 148 (154) 149 (150)
world 172 172 (177) 172 (174)

samples (about 250 ms) with overlap 750 samples (about 60
ms) and 120 LPC coefficients are computed for each parti-
tion. We are interested in two major performance indicators:
the speed of the training procedure and the quality of the re-
sults which is represented by the Frobenius norm of the re-
maining errors (||E||2F =

∑
i

∑
j E

2
ij). In terms of speed, we

are interested to compare the AK-SVD algorithm applied on
the training vectors with and without T-mindot executed. Of
course, since we reduce the number of training samples, we
expect the running time of AK-SVD to go down significantly
in both of its main stages: the computation of the new atom
using SVD and the computation of the new representations
of all the training vectors using OMP. After the training is
done, using the same initial dictionary and the same number
of items in each sparse representation, we compare the rep-
resentation errors of both computed dictionaries against the
original set of training vectors. The representation error is de-
scribed by the Frobenius norm of the difference between the
initial training set and the reconstructed set of vectors. Here,
we expect the errors introduced by T-mindot to be small.

We describe two variants of the procedure, one in which all
centroids are kept and one in which the centroid that don’t
cluster any other training samples around them are eliminated
(cut). Each training vector has a fixed length of n = 120
and the dimensions of the training sets are described in Ta-
ble 2. On average, T-mindot manages to reduce the sizes of

Table 5: Frobenius norms of the image representation error matrices

AK-SVD RAND+AK-SVD T-mindot + AK-SVD
k k0 - - T = 0.95 T = 0.9

3
4 35.47 40.96 36.48 35.86
8 28.55 32.61 29.71 28.33
16 20.91 24.21 21.84 19.58

4
4 34.44 40.98 35.50 35.10
8 27.63 32.34 28.88 27.40
16 19.89 23.50 20.72 18.49

5
4 35.80 39.75 35.14 34.57
8 27.23 30.18 28.19 26.66
16 19.79 23.15 19.98 17.54

Table 6: Running times for image simulations (in seconds)

AK-SVD RAND+AK-SVD T-mindot + AK-SVD
k k0 - - T = 0.95 T = 0.9

3
4 62.52 2.34 12.27 9.22
8 79.96 4.5 15.76 11.84
16 234.28 6.24 26.15 19.68

4
4 98.80 3.12 13.44 10.37
8 143.27 7.91 17.73 13.51
16 270.40 8.96 30.50 23.61

5
4 121.32 5.58 14.85 11.69
8 164.91 9.01 20.15 15.28
16 293.16 14.28 36.27 26.75

Table 4: Running times for audio simulations (in seconds)

AK-SVD T-mindot + AK-SVD (+cut)
training set - T = 0.95 T = 0.9
classical 1886 1238 (570) 745 (371)
electronic 796 474 (120) 348 (110)
jazz-blues 103 73 (35) 57 (51)
metal-punk 182 120 (55) 72 (51)
rock-pop 410 242 (103) 153 (97)
world 929 561 (231) 357 (172)

the training sets by 70% and with 85% if the lone centroids
are also cut. This large cut leads to a much faster running
time for AK-SVD. Also, a further positive effect that this cut
might have is the elimination of outliers from the data. When
the cut is performed better performance is achieved when T
is smaller since a lower T generally outputs fewer lone cen-
troids, so less data items are cut.

Tables 3 and 4 describe the results obtained for the run-
ning speed and the quality of representation in the computed
dictionaries. From the tables it is clear that the speedup is
significant for all the datasets while the error levels are very
close. Using lower values for the parameter T induces a

higher speedup at the expense of less accurate clustering and,
in this case, higher representation errors. Also, further re-
moval of the lone clusters reduces the running time even more
while the increase to the error is insignificant. Another set
of simulations runs for training vectors extracted from a few
1024 × 1024 popular test images (lena.bmp, peppers.bmp,
airplaneU2.bmp, man.bmp, airfield2.bmp, testpat.bmp). The
idea is again to show that applying T-mindot before the K-
SVD procedure greatly reduces the running time while keep-
ing the representation error low.

The training set consists of 98304 vectors of size 64 ex-
tracted from 8 × 8 patches of the test images mentioned ear-
lier. The results of the simulations are presented in Tables 5
and 6. The parameter k establishes the dimension of the dic-
tionary (for example a k-overcomplete dictionary is of size
D ∈ Rn×kn), k0 dictates the number of atoms that partic-
ipate in the reconstruction (OMP step) of the training vec-
tors. All simulations start from the same random initial dic-
tionary. The run that considers also T-mindot is an excep-
tion from this rule. In this case, we take the initial dictio-
nary to be composed from centroids with the highest num-
ber of items grouped around them. All runs have the same
number of AK-SVD iterations, which in this particular case
is 20 since no significant decrease in the error happens after
this limit. Using the T-mindot clustering procedure with pa-

rameter T ∈ {0.9, 0.95} on such data reduces the size of the
dataset by more than 90%. The procedure called RAND+AK-
SVD runs by randomly selecting the same number of train-
ing vectors as the number of centroids selected by T-mindot
with T = 0.95 and then applying the AK-SVD algorithm. Of
course, we expect this procedure to run the fastest but we also
expect this procedure to run worst in terms of the represen-
tation error. Such a result validates the extra effort allocated
in the T-mindot step. From Table 5 it is clear that better
results are obtained for T-mindot with T = 0.9 than with
T = 0.95. One explanation for this result is the way in which
the training procedure is initialized. The centroids computed
with T = 0.9 seem to be more relevant than the ones com-
puted with T = 0.95 and this leads to a lower representation
error. Simulation show that further lowering T increases the
representation error significantly.

All simulations prove conclusively that applying T-
mindot greatly reduces the running time of the training
algorithm (in this case, AK-SVD) while keeping the rep-
resentation error close to the error obtained if the training
algorithm would have been applied without the clustering
first. On average, the speedup obtained using T-mindot is
approximately 7 while the magnitude of the error is kept low,
in some cases even lower than the full training algorithm can
achieve. Of course, the speedup is heavily dependent on the
dataset, but in the context of training dictionaries for sparse
representation the data items are usually highly correlated.

All comparisons are conducted against AK-SVD since the
running time of the K-SVD method is extremely high for
large datasets like the ones used in this setting, while the rep-
resentation errors are very similar. The fact that K-SVD com-
putes the best direction by the exact SVD doesn’t seem to
have a crucial effect on the final result.

4. CONCLUSIONS

This paper presents an efficient method of clustering, called T-
mindot, which is applied on a dataset before the K-SVD algo-
rithm is used to build a dictionary that describes a sparse lin-
ear model of the data. The main advantage of this procedure
is that it enables the application of K-SVD on large datasets,
where the speed of the training procedure would have been
prohibitively long, while being able to keep the error at a rel-
ative close level to the error obtained by the application of the
K-SVD on the entire dataset.

5. REFERENCES

[1] A. M. Bruckstein, D. L. Donoho, and M. Elad, From
Sparse Solutions of Systems of Equations to Sparse Mod-
eling of Signals and Images, SIAM Review, Vol. 51, No.
1, 34–81, 2009.

[2] E. J. Candes and T. Tao, Decoding by linear program-
ming, IEEE Trans. Inform. Theory, 51, 4203–4215, 2004

[3] D. L. Donoho, Compressed sensing, IEEE Transactions
on Information Theory, Vol. 52, No. 4, 1289–1306, 2006.

[4] R. G. Baraniuk, E. Candes, M. Elada and Ma Yi, Applica-
tions of Sparse Representation and Compressive Sensing,
Proceedings of the IEEE, 98, 906–909, 2010.

[5] K. Huang and S. Aviyente, Sparse Representation for Sig-
nal Classification, Advances in Neural Information Pro-
cessing Systems 19, 609–616, 2007.

[6] S. G. Mallat and Z. Zhang. Matching Pursuits With Time-
Frequency Dictionaries. IEEE Trans. Signal Processing,
41(12), 1993.

[7] R. Rubinstein, M. Zibulevsky and M. Elad, Efficient Im-
plementation of the K-SVD Algorithm using Batch Or-
thogonal Matching Pursuit Technical Report - CS Tech-
nion, 2008.

[8] M. Aharon, M. Elad and A. Bruckstein, K-SVD: An
Algorithm for Designing Overcomplete Dictionaries for
Sparse Representation. IEEE Trans. Signal Processing,
54(11), 2006.

[9] J. Mairal, M.Elad, G. Sapiro, Sparse Representation for
Color Image Restoration. IEEE Transactions on Image
Processing 17, 53-69, 2008.

[10] D. R. Wilson and T. R. Martinez, Reduction Tech-
niques for Instance-Based Learning Algorithms, Machine
Learning, 257–286, 2000.

[11] L. Huawen, Z. Shichao, Z. Jianming, Z. Xiangfu and M.
Yuchang, A New Classification Algorithm Using Mutual
Nearest Neighbors, 9th International Conference on Grid
and Cooperative Computing (GCC), 52–57, 2010.

[12] H.M. Jani, S. P. Lee, Applying machine learning us-
ing case-based reasoning and rule-based reasoning ap-
proaches to object-oriented application framework doc-
umentation, ICITA, vol. 1, 52–57, 2005.

[13] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Pi-
atko, R. Silverman and A. Y. Wu, An efficient k-means
clustering algorithm: Analysis and implementation, IEEE
Trans. PAMI, 24, 881-892, 2002.

[14] L. R. Rabiner and B. H. Juang,Fundamentals of speech
recognition, PTR Prentice Hall, 1993.

[15] ISMIR 2004 web page, http://ismir2004.ismir.net
/genre contest/index.htm .

