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ABSTRACT

Coordinate descent (CD) is a simple and general optimiza-

tion technique. We use it to solve the sparse total least squares

problem in an adaptive manner, working on the ℓ1-regularized

Rayleigh quotient function. We propose two algorithmic ap-

proaches for choosing the coordinates: cyclic and random-

ized. In both cases, the number of CD steps per time instant is

a parameter that can serve as a trade-off between complexity

and performance. We present numerical experiments show-

ing that the proposed algorithms can approach stationary error

near that of the oracle. The randomized algorithm is slightly

better than the cyclic one with respect to convergence speed.

Index Terms— adaptive algorithm, channel identifica-

tion, sparse filter, total least squares, coordinate descent, ran-

domization

1. INTRODUCTION

The total least squares (TLS) problem associated with an

overdetermined linear system assumes that both the matrix

of the system and the right hand side are affected by noise,

unlike the least squares (LS) problem where the matrix is

considered perfectly known. In signal processing, a problem

matching the TLS setup is FIR channel identification with ad-

ditive noise not only on the output, but also on the input. Our

purpose here is to study adaptive algorithms for the sparse

TLS problem.

The work on adaptive TLS (ATLS) algorithms started

more than two decades ago and can be loosely split on two

classes, the Rayleigh quotient function associated with TLS

being minimized in both. The first class contains LMS-like

algorithms, which advance with fixed step size and whose

complexity is O(N) per time instant. Gradient descent was

recently analyzed in detail in [1], where other relevant work

is cited. Other LMS-like algorithms can be found in [2–4].

The second class contain algorithms more similar to RLS,

where an optimal step is performed on a chosen direction and
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the covariance matrix of the input is needed. The complexity

is O(N) for FIR channel identification, but would be O(N2)
in general for covariance matrix update. The direction of

the Kalman gain is used in [5], while [6] appeals to the di-

rection of the current data; the latter algorithm has a lower

complexity.

All the above work is on full solutions. For sparse TLS,

we can cite only batch algorithms. A block coordinate descent

method is used on an ℓ1-regularized objective in [7], while

several greedy algorithms are presented in [8].

We propose here two types of sparse ATLS algorithms us-

ing coordinate descent (CD) on the ℓ1-regularized Rayleigh

quotient function. The difference is in the order in which the

coordinates are taken: cyclic or randomized. In both cases,

the number of CD steps per time instant is a parameter of the

algorithm, that can be used to trade-off complexity and per-

formance. The innovation consists in the specific form of the

CD steps and in the combination of techniques for obtaining

performance nearing that of the oracle algorithm. In particu-

lar, the adaptation of probabilities from [9] is modified for the

specific of the ATLS behavior.

The contents of the paper is as follows. After presenting

the ATLS problem in section 2, we show how optimal CD

steps can be computed efficiently for the considered objective

in section 3. Then, in section 4, we describe the details of our

algorithms. Section 5 is dedicated to simulations, showing the

performance of our algorithms.

2. ADAPTIVE TLS PROBLEM

The basic problem considered here is to identify the parame-

ters of a linear model with noise on both input and output

[α(t) + η
(t)
i ]Tx = β(t) + η(t)o , (1)

where α(t) is the input vector at time t and β(t) the corre-

sponding output. FIR channel identification is a particular

case. The input and the output are available via measurements

affected by additive Gaussian noise with variance σ2
i and σ2

o ,

respectively; we denote γ = σ2
o/σ

2
i . The parameter vector

x, possibly variable in time, is unknown. We assume that the



length N vector x is sparse, i.e. only a few of its elements are

nonzero, their locations being unknown.

We use an exponential window with forgetting factor λ
and define

A(t) =

[
√
λA(t−1)

α(t)T

]

, b(t) =

[ √
λb(t−1)

β(t)

]

. (2)

In the adaptive algorithms, where the whole data cannot be

stored, we will use

Φ
(t) = A(t)TA(t), ψ(t) = A(t)T b(t). (3)

instead of (2).

The solution of the estimation problem based on (1) is the

(structured) total least squares (TLS) solution of the system

A(t)x(t) = b(t). One way of finding it is to minimize the

Rayleigh quotient function [1, 5]

J(x(t)) =
‖b(t) −A(t)x(t)‖2
‖x(t)‖2 + γ

(4)

with a sparsity constraint on x(t).

3. COORDINATE DESCENT

The adaptive algorithms that we propose are based on coor-

dinate descent (CD). We start by studying CD in the batch

case.

3.1. CD for TLS

We derive here formulas for the optimal CD step on coordi-

nate i for the function (4).

Let us assume that, at time t, we have a solution approx-

imation x. The residual corresponding to this solution is (we

drop the time index)

r = b−∑N−1
j=0 xjaj , (5)

where aj is the j-th column of the matrixA. Denote

r̃ = b−
∑

j 6=i xjaj = r + xiai (6)

the residual without the contribution of the i-th coordinate.

Denote

γ̃ = γ +
∑

j 6=i x
2
j . (7)

Isolating the i-th coordinate, the function (4) has the form

J(xi) =
‖r̃ − xiai‖2
x2i + γ̃

. (8)

The gradient of this function with respect to xi is

∂J

∂xi
= 2

c0x
2
i + c1xi + c2
(x2i + γ̃)2

, (9)
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Fig. 1. Typical form of function (8).

where
c0 = aT

i r̃

c1 = γ̃‖ai‖2 − ‖r̃‖2

c2 = −γ̃aT
i r̃ = −γ̃c0

(10)

The gradient is zero for the values

ξ± =
−c1 ±

√

c21 − 4c0c2
2c0

(11)

Since c0 and c2 have opposite signs, one of these values is

positive and the other negative.

The function (8) has finite (and equal) values at ±∞. The

zeros of the gradient correspond to a minimum and a maxi-

mum. See figure 1 for a typical shape of the function. Since

the zeros have opposite signs, we can distinguish the mini-

mum by looking at the sign of the gradient for xi = 0, i.e.

at the sign of c2. So, the optimal value of the coordinate xi
when the other coordinates are fixed is

ξ =

{

max(ξ+, ξ−), if c2 < 0
min(ξ+, ξ−), if c2 > 0

(12)

The decrease of the function (8) when xi goes from zero

to its optimal value is

∆J =
‖r̃‖2
γ̃
− ‖r̃ − ξai‖2

ξ2 + γ̃
=
aT
i r̃ · ξ
γ̃

(13)

(Note that indeed ∆J ≥ 0, due to the choice (12) and the

values (10).)

3.2. CD for ℓ1-regularized TLS

If the parameter vector x from (1) is sparse, then it can be

estimated by minimizing the ℓ1-regularized TLS objective

Ĵ(x) = J(x) + µ‖x‖1, (14)

where J(x) is defined in (4) and µ is a positive weight. Op-

timal coordinate descent is still possible and we explain here

how it can be done exactly.

Let us assume that the optimal value (12) of the i-th coor-

dinate is positive when minimizing the TLS objective (8); the



case ξ < 0 is similar. CD on the i-th coordinate for (4) means

minimizing

Ĵ(xi) = J(xi) + µ|xi|+ const. (15)

Due to the shape of function (8) (see again figure 1), the value

ξ̂ at which Ĵ(xi) is minimum is such that ξ̂ < ξ. The discon-

tinuity of the derivative of (15) in the origin means that either

∂Ĵ/∂ξ̂ =0 for some ξ̂ > 0 or ξ̂ = 0.

To minimize (15) we attempt to solve, for xi ≥ 0, the

equation
∂J

∂xi
+ µ = 0. (16)

In view of (9), this means finding the roots of the polynomial

q(xi) = µ(x2i + γ)2 + 2(c0x
2
i + c1xi + c2). (17)

Let ζ be the largest real root that is smaller than ξ; if there is

no such root, we formally take ζ = −∞. Then, the minimum

of (15) is obtained for

ξ̂ = max(ζ, 0). (18)

This is the typical soft thresholding for ℓ1-regularized func-

tions. Note that (17) is a fourth order polynomial, whose roots

can be found through explicit formulas. Since the coefficient

of x3i is zero, the formulas are somewhat simpler than in the

general case. The number of operations is around 50, in any

case less than usual values of N .

4. ADAPTIVE TLS ALGORITHMS

Algorithm 1 presents the details of our CD adaptive approach

for solving the TLS problem. At each time instant a number

of R coordinates are updated, with R < N . There are two

choices of coordinates that we considered. One is the usual

cyclic CD, with the remark that a full sweep is done over sev-

eral time instants. The other is randomized CD, similar to the

least-squares solution from [9]. Besides the choice of coordi-

nates, the other operations are identical.

Step 5 contains the update of the data-defined matrices

from (3), whose elements are sufficient for all subsequent cal-

culations. The update needsO(N2) operations in general, but

only O(N) in the case of FIR channel identification, where

the first N − 1 elements of vector α(t) are generated by shift-

ing α(t−1). For efficient computation we permanently update

the values of the squared norm of the current solution x and

residual r. Step 6 updates ‖r‖2 with the error given by the

current equation.

The loop 7 contains the R CD steps. The solution norm

‖x‖2 is used in step 9 to compute the useful quantity γ̃ from

(7) and updated in step 16 with the new value of the current

coordinate; in the long run, such an update may be numer-

ically unsafe and so the recomputation of ‖x‖2 once every

several time instants is recommendable.

Algorithm 1: Cyclic and randomized adaptive TLS

1 Main parameters: R, number of CD steps per time

moment; λ, forgetting factor; γ, noise variances ratio

2 Initialize x = 0, ‖x‖2 = 0, ‖r‖2 = 0, πℓ = 1/N ,

νℓ = νav/N , wℓ = 1, ℓ = 0 : N − 1
3 cyclic: i← 0
4 for t = 1, 2, . . . do

5 Update data products

Φ← λΦ+α(t)α(t)T

ψ ← λψ + β(t)α(t)

6 Update residual norm

‖r‖2 ← λ‖r‖2 + [β(t) −α(t)Tx]2

7 for k = 0 : R− 1 do

8 randomized: generate random i using π

9 γ̃ ← γ + ‖x‖2 − x2i
10 Compute c0 with (19)

11 Compute ‖r̃‖2 with (20)

12 c1 = γ̃φii − ‖r̃‖2
13 c2 = −γ̃c0
14 Compute new xi with (18) and the construction

before it, and weight defined by (21), (25), (26)

15 Compute probability related quantity (22)

16 ‖x‖2 ← γ̃ + x2i − γ
17 ‖r‖2 ← ‖r̃‖2 − 2c0xi + φiix

2
i

18 cyclic: i← (i+ 1) mod N

19 Compute new probabilities π with (23), (24)

Using the compacted data (3), the coefficients (10) that

determine the size of the CD step can be efficiently computed.

From (6) we obtain

c0 = aT
i r̃ = ψi −

∑

j 6=i

φijxj . (19)

The same relation gives

‖r̃‖2 = ‖r + xiai‖2 = ‖r‖2 + 2c0xi − φiix2i . (20)

Hence, steps 9–13 produce the coefficients (10). The cost is

only O(N), given by the computation of c0.

Before describing the other operations, let us point out

that TLS is more challenging than LS, since the objective (4)

favors higher values of the solution x than the LS objective,

which is only the numerator of (4). Hence, especially in the

beginning of the TLS adaptive process, it is possible that a

coordinate may get a high value, if such a value does not affect

too much the residual, but decreases the objective by its sheer

magnitude. Such an event is less likely if the ℓ1 regularization

weight from (14) is large. However, a large weight would bias

the TLS solution. A solution, see e.g. [10], is to take in (15)

µ = µ0 · wi (21)



where wi is 1 if the coefficient xi is likely to be small and

decreases to zero as the coefficient magnitude is likely to be

larger. We will give later the exact relation for wi.

The probabilities π associated with the coordinates

choices in step 8 of Algorithm 1 have two components. One

is taken similarly to the randomized RLS algorithm from [9],

i.e. it is proportional to the decrease (13) of the TLS objective

produced by a CD step and hence to the quantity

pi =
c0ξ

γ̃
, (22)

where ξ is the optimal TLS step given by (12). So, the first

component is meant to ensure that the coordinates with large

contribution to the objective are selected more often then the

others. The second component, denoted νi, tries to ensure a

certain fairness in the coordinate selection; this is different

from the minimum probability technique used in [9] and has

the purpose of promoting the selection of coordinates not se-

lected for a long time, which is more dangerous for TLS than

for LS. Denoting S the set of coordinates chosen at time t, we

use the update rule

ν
(t+1)
i =

{

0 if i ∈ S
ν
(t)
i +

∑
ℓ∈S

ν
(t)
ℓ

N−|S| if i 6∈ S
(23)

So, a selected coordinate sees its probability drastically de-

creased for the next time instants, while the others benefit

from an increase that keeps the overall sum constant. We de-

fine νav the average value of the second component, hence
∑

ℓ νℓ = Nνav. The overall probabilities are defined via

πi = νi +
pi

∑N−1
ℓ=0 pℓ

(1−Nνav) . (24)

Coming back to the weights (21), we propose a logarith-

mic function [11] that depends on the probabilities (24)

wi(πi) =







1 if πi − νi ≤ τ
log2(gυ)−log2(gτ+ϑ)
log2(gυ)−log2(gτ )

if τ < πi − νi < υ

0 if υ ≤ πi − νi
(25)

where ϑ = (gυ − gτ )πi−νi−τ
υ−τ

. The constants gυ , gτ mostly

define the shape of the function; υ is the probability threshold

over which the coefficient is considered surely nonzero, while

τ is the probability threshold under which a coefficient is con-

sidered surely zero. For the cyclic version of the algorithm we

use the same weighting scheme, since the relation between the

probabilities and the magnitude of the coefficients is the same.

Finally, to prevent large changes of the weight, induced by the

above mentioned possible sudden growth of a coefficient, we

set

w
(t)
i = ρw

(t−1)
i + (1− ρ)wi(πi), (26)

where ρ is a constant near to 1. Thus, the values produced by

the logarithmic law (25) have small importance at a certain

time instant and only repeated occurrence of similar values

may drive the weight towards zero or one. (A zero weight

would be especially dangerous for a coefficient that should be

zero but gets accidentally a large value.)

The above weight calculation and the operations de-

scribed in section 3.2 allow the update of the current coor-

dinate xi in step 14 of the algorithm. The remaining steps

update other useful values, including ‖r‖2 in step 17 by

reversing (20).

The number of operations per time instant is O(RN),
with a small constant multiplying RN . So, as advocated

in [9], the number of CD steps R can effectively serve as a

trade-off between complexity and performance.

5. SIMULATIONS

We name ATLS-C and ATLS-R our algorithms, the first be-

ing the cyclic and the second the randomized versions of Al-

gorithm 1. The parameters common to all simulations are as

follows. The average probability from (24) is πav = 0.7/N .

The logarithmic function used to compute the weights (25)

is defined with gτ = 2, gυ = 4. The constant from (26) is

ρ = 0.99. The other parameters, namely ℓ1 regularization

penalty from (21) and the thresholds τ , υ used to compute the

weights are specified for each simulation setup. For compar-

ison we use the oracle RTLS-O, which implements the algo-

rithm from [6] knowing the locations of the nonzero elements.

RLS-O is the recursive least-squares oracle.

We consider two simulation scenarios, both for an FIR

channel with N = 200 coefficients of which L are nonzero.

In the first, the channel is constant; in the second, the chan-

nel is variable and the coefficients have a sinusoidal variation

with a period of 5000 samples. The magnitude of the coef-

ficients is generated randomly and the magnitude of the vec-

tor of coefficients is normalized to 1. The positions of the

nonzero coefficients are randomly chosen. In both scenarios,

there are two types of noise. We take either σi = σo = 0.01
(hence γ = 1) or σi = 0.05, σo = 0.01 (hence γ = 0.2)

Figure 2 presents the evolution of solution MSE for the

constant channel with L = 5 coefficients. The horizontal

green line marks the stationary level attained by the RTLS al-

gorithm from [6] (that assumes a full solution) at about t =
1500; the full curve is not drawn due to its very slow con-

vergence. The algorithms using the randomized coordinate

selection converge consistently faster than their cyclic coun-

terparts. The stationary error approaches that of the TLS or-

acle and is lower than that of the LS oracle, especially if the

inputs are noisier.

Figure 3 presents the evolution of the solution MSE for

the variable channel for different sparsity levels, L = 5 and

L = 15. The algorithms are robust and are able to track slow

changes in the coefficients values. For a low sparsity level the

performance approaches that of the LS oracle while for larger

sparsity levels the performance degrades slightly.
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Fig. 2. MSE for a constant channel with L = 5, λ = 0.99,

µ0 = 4, τ = 0.05/N , υ = 0.15/N and (up) γ = 1, (down)

γ = 0.2.

6. CONCLUSIONS AND FUTURE WORK

We have proposed two adaptive, sparsity aware algorithms for

solving the total least squares problem. Both are based on co-

ordinate descent on the ℓ1-regularized Rayleigh quotient cri-

terion function. The coordinates for each update are selected

using either a cyclic or probabilistic approach. For the prob-

abilistic approach, the probabilities are updated online based

on the decrease of the criterion.

Despite their low computational burden, the proposed al-

gorithms have good performance, approaching that of the or-

acle TLS. The number R of descent steps governs the con-

vergence speed and serves a tradeoff between complexity and

performance.

Further work will be dedicated towards the mathematical

analysis of the algorithm performance. It will also aim to

provide an online adaptation of the ℓ1 penalty weight and of

the probability thresholds.
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