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Abstract—Dictionary learning is usually approached by look-
ing at the support of the sparse representations. Recent years
have shown results in dictionary improvement by investigating
the cosupport via the analysis-based cosparse model. In this paper
we present a new cosparse learning algorithm for orthogonal
dictionary blocks that provides significant dictionary recovery
improvements and representation error shrinkage. Furthermore,
we show the beneficial effects of using this algorithm inside
existing methods based on building the dictionary as a structured
union of orthonormal bases.

Index Terms—sparse representation, orthogonal blocks,
cosparse, dictionary design

I. INTRODUCTION

Dictionary learning through sparse representations has
shown promising results in signal processing with efficient
applications in compression, detection, denoising and com-
pressed sensing. One of the central problem in this field
is modeling observed signals by using just a few columns,
also called atoms, from a learned dictionary. This process
is denoted in the literature as the synthesis-based sparse
representation model [1], where we are interested in the few
non-zero entries of the approximations. Recent years have
shown approximation improvements when instead we analyze
the set of atoms that do not participate in representing a signal.
This process is also called the cosparse analysis model and is
described in detail in [2]. In both models the focal point is the
representation of a signal y ∈ Rp using a set of atoms from
the dictionary.

In the sparse or synthesis model, the dictionary is D ∈ Rp×n

and the representation is found by attempting to solve

minimize
x

‖y −Dx‖22
subject to ‖x‖0 ≤ s

(1)

The representation vector x ∈ Rn is sparse, having at most s
nonzero elements; its so called `0-norm (which is not properly
a norm) is denoted ‖.‖0. Thus, the signal y is approximated
in an s-dimensional subspace whose basis is made of s
atoms of the dictionary (also called support). The dictionary
is typically overcomplete, i.e. p < n, such that the number of
s-dimensional subspaces is large and hence the approximation
is better. The most popular method for approximately solving

(1) in the dictionary learning context is Orthogonal Matching
Pursuit (OMP) [3].

In the cosparse or analysis model, the overcomplete dic-
tionary is Ω ∈ Rn×p, with n > p, and the atoms are
the rows of the dictionary. The representation, now denoted
z ∈ Rp, is orthogonal on a set I of n − s atoms (named
cosupport), so again it lies in an s-dimensional subspace, and
the representation problem is

minimize
z,I

‖y − z‖22

subject to ΩIz = 0

rank(ΩI) = n− s

(2)

where ΩI contains the rows of Ω with indices in I.
We focus on dictionary learning (DL) in the sparse model.

DL methods start with a given set of training signals Y ∈
Rp×m and a sparsity level s and attempt to find a dictionary
D by solving

minimize
D,X

‖Y −DX‖2F

subject to ‖xi‖0 ≤ s, ∀i
(3)

where X ∈ Rn×m is the associated s-sparse representations
matrix, with at most s nonzero elements on each column and
xi is column i of matrix X . The atoms are constrained to unit
norm. An overview of the field along with existing solutions
and applications are presented in [1], [4]. The minimization
from (3) is usually [5]–[7] solved with an alternation process
in which one of X or D is optimized while keeping the other
fixed.

In the general case the dictionary D is not structured
in a specific way, but some methods [8], [9] approach the
problem by building the redundant atoms set as a union of
smaller orthogonal dictionaries also termed as orthonormal
bases (ONBs) that transform the optimization problem (3) into:

minimize
Qj ,X

‖Y − [Q1 Q2 . . . QM ]X‖2F

subject to ‖xi‖0 ≤ s, ∀i
QT

j Qj = Ip, 1 ≤ j ≤M

(4)

where the union of M ONBs denoted Qj ∈ Rp×p, with j =
1 . . .M , represents the dictionary D.



Representative for this approach are the union of orthonor-
mal bases algorithm (UONB) [8] and the single block orthog-
onal algorithm (SBO) [9], which use different methods for
representation. The former makes use of atoms from all bases
by OMP selection, while the later constrains the atoms pool
to a single block. Even though SBO uses a single base for
representation, the more bases it has in its union the greater
the chance of finding a better fit that minimizes the error even
further. SBO has to use more dictionary blocks than UONB in
order to achieve the same representation error but nevertheless
it is able to provide faster execution times.

The basic operation for both methods is the training of
an orthogonal block, using an alternation process adapted to
orthogonality. In particular, the atoms optimization is done
through Procrustes orthogonalization [10]. In this paper we
propose a new dictionary training algorithm for the orthogonal
case, inspired from the cosparse DL method from [11]. The
combination of techniques from both the sparse and cosparse
approaches is the key to better representations and is possible
due to the special characteristics induced by orthogonality.

The manuscript is structured as follows: section II describes
our new cosparse orthonormal block training algorithm and
its relation to the synthesis version, followed by numerical
results supporting its dictionary recovery and representation
error improvements in section III.

II. COSPARSE ORTHONORMAL BLOCK TRAINING

We start with the simple remark that the sparse (1) and
cosparse (2) representation problems have the same optimal
error if the dictionary is orthogonal. Indeed, given D orthog-
onal, the problem (1) is solved by computing x = DT y and
keeping only the largest (in absolute value) s elements, the
others being forced to zero. This holds because the objective
of (1) is equal to ‖DT y− x‖22. For the cosparse problem (2),
the atoms are now rows instead of columns, so the dictionary
is Ω = DT . The two problems are connected via the relation
DT z = x. The n− s atoms that are orthogonal on z are those
corresponding to the positions of zeros in x. Otherwise said,
the problem (2) is solved by computing DT y and setting to
zero the n− s smallest elements (in absolute value). We work
on complementary subspaces, but the final result is the same.

A. Building one orthonormal block

UONB [8] and especially SBO [9] use 1ONB (algorithm
1) to build one orthonormal block. 1ONB starts with an
orthogonal matrix based on the SVD decomposition of the
training signal set Y (step 1 in algorithm 1). It then proceeds
to represent Y with the new block Q by performing a hard-
thresholding on the largest s entries in absolute value of the re-
sulting matrix X (step 3). The dictionary block is then refined
through an orthogonal approximation of the training signals Y
and the representations X (step 4). This approximation process
is also called Procrustes orthogonalization and its computation

Algorithm 1: 1ONB

Data: signals set Y ,
target sparsity s,
number of rounds R

Result: dictionary Q and sparse representations X

1 Initialization: Let Q = U where UΣV T = SVD(Y )
2 for r ← 1 to R do
3 Update: X = QTY and select the largest s entries of

each column setting the others to zero
4 Approximation: apply Procrustes orthogonalization

(5) on Y and X to approximate Q

steps, given X and Y , are as follows:

P = Y XT

UΣV T = SVD(P )

Q = UV T

(5)

In order to further improve the dictionary block, steps 3 and 4
are repeated several times as dictated by the number of rounds
R in step 2.

B. Building cosparse orthonormal blocks

Using the idea behind 1ONB and concepts inspired from
cosparse DL, we propose a new method for training an
orthogonal block, described in algorithm 2. Since the sparse
and cosparse models are interchangeable in the orthogonal
case, as explained above, we adopt an idea used for atom
update in the cosparse K-SVD algorithm [11]. Denoting Q
the orthogonal dictionary, an atom qi is optimized by solving
the problem

minimize
qi

‖qTi YI‖22

subject to ‖qi‖2 = 1
(6)

where I is the set of signals that do not use the atom qi in
their representation (or, taking the cosparse view, on which
qi should ideally be orthogonal). The objective function is
the total orthogonality error between the current atom and the
vectors it should be orthogonal on. The solution of (6) is the
singular vector corresponding to the smallest singular value of
YI . (Note the duality with sparse K-SVD, where the singular
vector of the largest singular value was involved.)

We give now a step-by-step description of algorithm 2,
named 1ONB-COSP in the sequel. The initialization of the
orthoblock Q in step 1 and the computation of the sparse
representations X in step 2 are done the same way as described
in algorithm 1. Following the general approach for atom
optimization in DL, we sequentially update each atom qi from
Q in the loop from step 3, using the atom refinement solution
described in (6): first we extract the signals that are not using
the current atom i in their representation (step 4) and then we
proceed to refine qi in step 5 by solving (6). We found that
updating the representations immediately after the change in
atom qi significantly improves the final representation error.



Algorithm 2: 1ONB-COSP

Data: signals set Y and target sparsity s
Result: dictionary Q and sparse representations X

1 Initialization: Let Q = U where UΣV T = SVD(Y )
2 Compute X = QTY and select the largest s entries of

each column
3 foreach atom i in dictionary Q do
4 Extract: I = {j|Xi,j = 0}
5 Refine: solve (6) to get qi
6 Update: X = QTY and select the largest s entries of

each column
7 Restructure: apply Procrustes approximation (5) on

Y and X to orthogonalize Q

Algorithm 3: 1ONB-COSP+

Data: signals set Y , sparsity s, rounds R
Result: dictionary Q and sparse representations X

1 {Q,X} = 1ONB-COSP(Y, s)
2 for r ← 1 to R do
3 Update: X = QTY and select the largest s entries of

each column
4 Approximation: apply Procrustes orthogonalization

(5) on Y and X to approximate Q

So, in step 6 we create new representations with the updated
dictionary Q the same way we did in step 2. Note that, with
the replacement of qi, the dictionary Q is no longer orthogonal
and it is important to use it unstructured when updating the
representations in step 6. We restructure Q as an orthogonal
matrix right before proceeding to the next atom update by
applying (5) in step 7. Numerical simulations showed that it
is better to use the old representations built in step 6 in the
next atom update iteration instead of computing new ones with
the restructured dictionary from step 7, although this may be
counterintuitive.

Updating each individual atom at a time (step 3) shows
an increased complexity of 1ONB-COSP when compared to
1ONB that updates the entire dictionary at once. This might
partly explain why 1ONB needs a few refinement rounds (e.g.
R = 5 or R = 6 in step 2) until error improvement stalls
[9], whereas for 1ONB-COSP our simulations showed that
a single refinement of each atom is enough and repeating the
dictionary training steps 3–7 does not improve the final quality
of the orthoblock Q.

We also found that further error improvement appears if, as
described in algorithm 3, 1ONB-COSP (step 1) is followed
by R 1ONB training rounds (steps 2–4). We denote 1ONB-
COSP+ this succession of algorithms. On the contrary, running
1ONB first and then performing 1ONB-COSP did not show
any improvement in the end result.

TABLE I
PERCENTAGE OF RECOVERED ATOMS

s Method SNR
10 20 30 ∞

3
1ONB 46.7 53.5 57.4 53.8

1ONB-COSP 99.9 100.0 100.0 91.9
1ONB-COSP+ 100.0 100.0 100.0 99.4

4
1ONB 15.5 30.9 28.9 28.8

1ONB-COSP 96.7 99.1 98.8 89.8
1ONB-COSP+ 98.2 99.8 99.4 97.8

5
1ONB 2.3 9.1 12.6 11.1

1ONB-COSP 85.4 91.5 95.8 90.2
1ONB-COSP+ 91.5 95.2 98.0 95.8

III. RESULTS AND PERFORMANCE

We present numerical results indicating the quality improve-
ments when using the cosparse approach. First we show the
benefits of 1ONB-COSP and 1ONB-COSP+ for the dictionary
recovery and the sparse image representation problems when
using a single orthogonal block. Then, we present its impact on
the algorithms that make use of it for DL, when the dictionary
is a union of orthogonal blocks. We always used identical
input and parametrization (where applicable) when comparing
methods.

A. Dictionary recovery

We started with a random square matrix of dimension
p = 20 on which we ran the SVD decomposition and used the
left orthogonal transformation matrix as the original dictionary.
We then generated a data set Y of m = 600 columns, each
obtained as a linear combination of s ∈ {3, 4, 5} randomly
chosen atoms. We perturbed Y by adding white gaussian noise
of 10, 20, 30 and ∞ dB SNR levels. We ran 1ONB and
1ONB-COSP+ with R = 5 rounds (enough to converge as
described in [9]) on the new signal set and compared the
original dictionary with the learned dictionary; two atoms,
one from the former, the other from the later dictionary, are
considered (nearly) identical if their scalar product is larger
than 0.99 in absolute value. The algorithms were provided
with the original sparsity level s that was used in generating
the clean data set Y . Table I shows a big improvement in the
percentages of recovered atoms, averaged over 50 runs. 1ONB-
COSP is vastly superior to 1ONB. 1ONB-COSP+ improves
the results where there is room for improvement, especially
for larger s.

B. Dictionary learning

We generated the training data set with images from USC-
SIPI [12]. Each image was normalized and organized into 8×8
random patches.

In figure 1 we present the average representation error over
100 runs for varying signals set sizes when using orthogonal
blocks of dimension p = 64 (n = 64 atoms) with a sparsity
constraint of s = 8. We used R = 5 rounds for 1ONB
and 1ONB-COSP+. Both cosparse methods are consistent in
providing a better dictionary than plain 1ONB. More so, at the
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Fig. 1: Error evolution for sparse and cosparse algorithms.

TABLE II
FINAL ERRORS FOR SPARSE AND COSPARSE ALGORITHMS

s m 1ONB COSP COSP+

4

512 0.0288 0.0280 0.0268
1024 0.0292 0.0283 0.0275
1536 0.0293 0.0278 0.0276
2048 0.0304 0.0295 0.0293

6

512 0.0239 0.0236 0.0217
1024 0.0243 0.0231 0.0230
1536 0.0245 0.0243 0.0230
2048 0.0257 0.0244 0.0242

8

512 0.0204 0.0185 0.0183
1024 0.0211 0.0198 0.0189
1536 0.0209 0.0196 0.0192
2048 0.0224 0.0223 0.0205

10

512 0.0176 0.0158 0.0155
1024 0.0183 0.0171 0.0167
1536 0.0183 0.0171 0.0168
2048 0.0195 0.0191 0.0184

12

512 0.0152 0.0151 0.0139
1024 0.0159 0.0173 0.0154
1536 0.0160 0.0163 0.0153
2048 0.0170 0.0165 0.0160

cost of an increase in execution time, 1ONB-COSP+ performs
better than 1ONB-COSP.

Table II shows the final errors after running a single round
of tests on p = 64 sized dictionary blocks with varied
sparsity constraints s ∈ {4, 6, 8, 10, 12} and different training
set sizes (m ∈ {512, 1024, 1536, 2048}) for each sparsity
level. Except for two results (s = 12), 1ONB-COSP presents
an improvement in approximation error over 1ONB, while
1ONB-COSP+ always outperforms both methods.

Figure 2 shows the sparsity impact on the representations
obtained with algorithm 2. Using the same dimensions for the
input data as the ones used in figure 1 we changed the sparsity
constraint from s = 4 up to s = 12 for 1ONB-COSP while
keeping the same training signal set. We can see a natural
increase in error as the number of signals in the data set grows.
Also visible is the clear difference in representation quality as
the sparsity constraint is loosened.
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Fig. 2: Error evolution for different sparsity constraints.

C. Unions of orthonormal bases with cosparse training

Algorithms that train overcomplete dictionaries as a union
of orthonormal bases (such as UONB [8] and SBO [9]) use
1ONB to build one orthonormal block. UONB uses OMP for
representation, without taking any special advantage from the
structure of the dictionary. In the dictionary initialization stage,
we train the orthobases with 1ONB using distinct subsets of
the training signals. However, 1ONB cannot be fully used in
the iterative training of a block, due to the fact that atoms
from all blocks can appear in representation. On the other
hand, since it uses a single block for representation, SBO
can appeal to the simple representation algorithm described
above for orthogonal dictionary. SBO starts with a few 1ONB
trained orthobases and then adds new bases to the existing
union, that are also 1ONB trained with the set of the worst
represented signals. Finally the extended union is refined by
applying 1ONB on each dictionary block. The last two steps
are repeated until a stopping criterion is met.

To show how our cosparse approach behaves we substitute
1ONB with 1ONB-COSP or 1ONB-COSP+ in the dictionary
initialization and update stage of SBO and UONB, without any
other algorithmic modifications. Our goal here is to improve
the performance of SBO and UONB, for a comparison with
generic DL methods such as AK-SVD we direct the reader to
the numeric simulations from [9].

Following the comparison tests from [9] we used M =
3 orthobases for UONB and M = 16 for SBO (this makes
representation speed similar for the two methods). The signals
have size p = 64, being generated from images as in the
previous subsection. We impose a sparsity constraint s = 10
and a number of R = 5 training rounds for 1ONB and 1ONB-
COSP+. We ran multiple tests on varying signals set sizes from
m = 4096 to m = 8192. We plot the results in figures 3 and
4.

Figure 3 shows the average representation error over 10
runs when performing SBO with 1ONB, 1ONB-COSP and
1ONB-COSP+. Because SBO makes use of 1ONB training
during initialization and also during the main iterations, the
approximation improvement is consistent with the results seen
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Fig. 3: Representation error comparison of SBO variants.
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in figure 1.
Using the same average as described in figure 3, we show

the performance of UONB with all three 1ONB variants in
figure 4. Because 1ONB is only used at initialization the
cosparse variants have less impact on the overall performance
of UONB.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new algorithm for learn-
ing orthogonal dictionary blocks in a cosparse fashion. The
new algorithm shows significant improvements at recovering
dictionary atoms and provides a smaller representation error
when tested on synthetic and empirical data. We also show
that the improvement in representation holds when applying
the cosparse algorithms within existing methods that create the
dictionary as a union orthonormal bases.

In the future we plan on finding a method that takes
advantage of the orthogonal block cosparse training when
learning multiple orthoblock dictionaries.
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