
Noname manuscript No.
(will be inserted by the editor)

POS3POLY—a MATLAB Preprocessor for
Optimization with Positive Polynomials

Bogdan C. Şicleru · Bogdan Dumitrescu

Received: date / Accepted: date

Abstract Positive polynomials, relaxed to sum-of-squares in the multivariate
case, are a very powerful instrument having applications in signal processing,
control and other engineering fields. Hence, appeared the need of a library
which can work with positive polynomials as variables in a convex optimiza-
tion problem. We present here the POS3POLY library, which transforms poly-
nomial positivity into positive semidefinite constraints, thus enabling the user
to solve such problems without the need of knowing the parameterization for
each type of polynomial. POS3POLY is able to handle three types of polyno-
mials: trigonometric, real and hybrid. The positivity of the polynomials can
be global or only on a semialgebraic domain. POS3POLY allows also to de-
fine Bounded Real Lemma constraints. The library is written in MATLAB
and uses SeDuMi for solving the convex optimization problems. POS3POLY
can also work inside CVX. To show the usage of our library we give several
examples of 2-D FIR filter design.

Keywords library · convex optimization · positive polynomials · trigonomet-
ric/real/hybrid polynomials · filter design

Bogdan C. Şicleru
Dept. of Automatic Control and Computers, Politehnica University of Bucharest, 313 Spl.
Independenţei, 060042, Bucharest, Romania
Tel.: +40-21-4029167
E-mail: bogdan.sicleru@schur.pub.ro

Bogdan Dumitrescu
Dept. of Automatic Control and Computers, Politehnica University of Bucharest, 313 Spl.
Independenţei, 060042, Bucharest, Romania
E-mail: bogdan.dumitrescu@schur.pub.ro

Bogdan Dumitrescu
Tampere Int. Center for Signal Processing, Tampere University of Technology, P.O. Box
553, SF-33101, Tampere, Finland
E-mail: bogdan.dumitrescu@tut.fi

2 Bogdan C. Şicleru, Bogdan Dumitrescu

1 Introduction

A significant contribution of the last decade in convex optimization is the pa-
rameterization of sum-of-squares polynomials with positive semidefinite ma-
trices. This approach lead to the appearance of a myriad of new algorithms
in signal processing and in control. Filter design [15] has reached a new level
using sum-of-squares optimization [3]; also filter bank design [20], stability
analysis [5] and many more. These are based on trigonometric polynomials.
Real sum-of-squares polynomials have found application in e.g. controller de-
sign [12], stability analysis [24]. Recently, hybrid sum-of-squares polynomials
have also been used in applications [9]. Therefore, the necessity of a tool that
would incorporate the definitions of all types of sum-of-squares polynomials is
obvious.

POS3POLY is a library for solving convex [1,17] optimization problems
whose variables include positive or, in the multivariate case, sum-of-squares
polynomials. It assures the transparency of the parameterization of positive
polynomials, thus making the user able to solve problems with positive polyno-
mials without knowing what is needed for their characterization. POS3POLY
is written in MATLAB and uses SeDuMi [23] toolbox for optimization over
symmetric cones. For the high-level user POS3POLY can be used within CVX
[10]. One can also work with POS3POLY in conjunction with SDPT3 [25].

A general POS3POLY problem written in equality form is

min cTx
s.t. Ax = b, x ∈ K× P (1)

where K is a symmetric cone (which is a cartesian product of nonnegative
orthants, second order cones and cones of semidefinite matrices) and P de-
notes generically a cartesian product of cones of (diverse) positive polynomi-
als, which are defined by their coefficients. K is the cone used by SeDuMi and
other convex optimization libraries in semidefinite-quadratic-linear program-
ming (SQLP).

Using sum-of-squares relaxations [6,14,9], the POS3POLY library trans-
forms the problem (1) into the SQLP problem

min c̃T x̃
s.t. Ãx̃ = b̃, x ∈ K

(2)

which can be solved by SeDuMi.
Having built A, b, c from (1), the pos3poly function can be used to solve

the problem (1). A typical call for this function is

[x, y] = pos3poly(AsP, bsP, csP, KsP);

The syntax is similar to that used by SeDuMi namely AsP, bsP, csP are A, b,
c from (1), respectively; KsP is a structure that describes the cone K∪P from
(1). The output parameters x and y are the solutions of the primal problem
(1) and, respectively, the dual [1] of the equivalent problem (2).

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 3

POS3POLY allows full liberty in describing optimization problems that
involve trigonometric, real and hybrid positive polynomials. (Note that the ’3’
from POS3POLY comes from the three types of polynomials that can be used.)
The coefficients of the polynomials can be scalar or matrix, real or complex.
The positivity of the polynomials can be global or only on a semialgebraic
domain. A distinctive feature is the possibility of working with the Bounded
Real Lemma (BRL) type of constraint.

Some of the features offered by POS3POLY cannot be found in other
libraries. GloptiPoly [11] and SOSTOOLS [21] deal only with real polyno-
mials and are oriented specifically towards solving sum-of-squares problems.
YALMIP [16] and CVX have a richer syntax and hence the possibility of solv-
ing larger classes of problems. YALMIP has a module for real sum-of-squares,
while CVX offers limited support for univariate scalar positive polynomials.

Outline

The remainder of this article is structured as follows. Section 2 presents the
variables which characterize each type of polynomial. In Section 3 we treat
sum-of-squares polynomials positive on domains. Section 4 is dedicated to
describing the BRL type constraints. Working with POS3POLY inside CVX
is presented in Section 5. We conclude in Section 6.

Notation

We denote by Z , R and C the sets of integer, real and complex numbers
respectively. T denotes the unit circle. Bold characters denote multivariate en-
tities (vectors, matrices). For a polynomial H(q), we denote by h its vector of
coefficients. a∗ is the conjugate of a. The superscripts T and H denote trans-
position and Hermitian transposition, respectively. Tr M is the trace of the
matrix M. M � 0 means that M is a positive semidefinite matrix. ‖H(q)‖∞
and ‖H(q)‖∞ are max (|H(q)|) and σmax(H(q)), respectively, where σmax(M)
is the maximum singular value of the matrix M and ‖ · ‖∞ is the H∞ norm.

2 Polynomial description

This section shows how to manipulate positive polynomial variables in the
POS3POLY library. Following the SeDuMi style, a polynomial is character-
ized by a structure containing its degree, type and other relevant information,
as shown in Figure 1 and detailed throughout the paper, and a vector of coef-
ficients, which are variables of the optimization problem.

To describe the polynomials, we introduce in the SeDuMi structure, named
here KsP, two new fields: p and ptype.

If the optimization problem (1) has N positive polynomials among its vari-
ables, then KsP.p and KsP.ptype are N -by-1 cell arrays, each cell describing
a polynomial.

4 Bogdan C. Şicleru, Bogdan Dumitrescu

KsP

p{i} ptype{i}

[n1. . .nd κ] trigonometric(`) real(m) int

complex coef (0/1)

coefdeg nc

domdomdom

nunion hrows hsize

brl

Fig. 1 KsP—the structure of POS3POLY.

The field p holds the degree of a d-variate polynomial, n = (n1, n2, . . . , nd) ∈
Zd, and the size of the κ× κ matrix polynomial coefficients.

To specify the type of a polynomial (trigonometric, real or hybrid), the
user must give the number of trigonometric and/or real variables using the
fields trigonometric and/or real of ptype. By default, the polynomials are
trigonometric.

We present next the coefficients that represent the positive polynomials.
The polynomial variables are positioned at the end of x (see (1)), after the free,
linear, quadratic or semidefinite variables accepted by SeDuMi. Implicitly, the
coefficient vectors are real; to set them complex, the field complex coef is set
to 1.

2.1 Scalar polynomials

2.1.1 Trigonometric polynomial

A (Hermitian) trigonometric polynomial of degree n with complex coefficients
is

R(z) =
n∑

k=−n

rkz−k, r−k = r∗k, (3)

k,n ∈ Zd, z ∈ Td, rk ∈ C; the sum is taken over all k with −n ≤ k ≤ n.
The coefficients defining the polynomial belong to a halfspace Hd and form
the vector [

r(0,...,0), r(1,0,...,0), . . . , r(n1,0,...,0),
r(−n1,1,0,...,0), . . . , r(−n1,n2,...,nd), . . . , r(n1,n2,...,nd)

]
.

(4)

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 5

k1

k2

10

2 3 4

5 6 7

Fig. 2 Coefficients from a halfspace in 2-D.

The total number of coefficients in (4) is

M =
1 +

∏d
i=1(2ni + 1)

2
. (5)

Example 1 Consider the case of a bivariate trigonometric polynomial of degree
(1, 2). The coefficients are those of the monomials with the following degrees:

{ (0, 0), (1, 0),
(−1, 1), (0, 1), (1, 1),
(−1, 2), (0, 2), (1, 2)}.

Figure 2 shows the order in which the coefficients appear; filled circles belong to
the considered halfspace, empty circles do not—they are in the complementary
halfspace. ut

Example 2 Consider the (symmetric) trigonometric polynomial

R(z) = 2z2 − 3z + 6− 3z−1 + 2z−2,

z ∈ T, for which we want to find the minimum on the unit circle. The minimum
can be found by solving the optimization problem

µ? = max µ
s.t. R(z)− µ ≥ 0, ∀z ∈ T (6)

Denoting
S(z) = R(z)− µ, (7)

the problem (6) is equivalent with

µ? = max
µ,s

µ

s.t. (7)
S(z) ≥ 0, ∀z ∈ T

(8)

6 Bogdan C. Şicleru, Bogdan Dumitrescu

Table 1 POS3POLY program for solving the problem (8).

1 AsP = [1 1 0 0 ; % AsP is a 3x4 matrix

2 0 0 1 0 ; % 3 constraints; 4 variables: mu, s0, s1, s2

3 0 0 0 1 ;]; % S = s2z^(-2) + s1z^(-1) + s0 + s1z + s2z^2

4 bsP = [6 -3 2]’; % bsP = [r0 r1 r2]’; the free term

5 csP = [-1 0 0 0]’; % the objective function

6 KsP.f = 1; % mu is a free variable

7 KsP.p{ 1 } = [2 1]; % degree of polynomial and size of coefficients (1x1)

8 KsP.ptype{ 1 }.trigonometric = 1; % univariate trigonometric polynomial

9 x = pos3poly(AsP, bsP, csP, KsP); % call POS3POLY library

10 mu = x(1); % the minimum of the polynomial

where s = [s0 s1 s2]T is the vector of the coefficients of the positive poly-
nomial S(z), enumerated as in (4). Because in the univariate case the sets
of nonnegative and sum-of-squares polynomials are identical, the constraint
from the above problem is the same as requiring S(z) to be a sum-of-squares
polynomial.

Using the parameterization from Theorem 1, for the sum-of-squares con-
straint, POS3POLY can transform (8) into an equivalent SQLP problem. We
have to express the constraints of (8) into the form (1). In order to do this, we
put the constraint from (7) in a matrix equation form Ax = b, considering the
real µ and the coefficients of S(z) as the variables from x in (1). The equality
(7) is equivalent to 1 1 0 0

0 0 1 0
0 0 0 1

µ
s0
s1
s2

 =

 6
−3

2

 , (9)

We now have identified A and b from (1). The vector c contains four elements,
the first one being -1 and the rest zero.

The problem posed here can be solved with the code shown in Table 1.
With it, we obtain µ? = 0.8750.
Comments. The matrix from the left-hand side (LHS) of (9) is set in lines
1–3 of the code. We initialize the free term—the right-hand side (RHS) of
(9)—in line 4. The objective function is set in line 5. The unrestricted variable
µ is described in line 6 in the KsP structure. The degree of the polynomial and
the size of the coefficients are set in line 7. The polynomial is univariate, as
stated in line 8. We call POS3POLY in line 9. The minimum is extracted from
the solution in line 10. ut

2.1.2 Real polynomial

Let us take a real polynomial

P (t) =
n∑

k=0

pktk,

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 7

pk ∈ R, t ∈ Rd. There is no symmetry here, so we need all the coefficients
of the polynomial. The order of the coefficients is illustrated in the vector
describing the polynomial:[

p(0,...,0), . . . , p(n1,0,...,0), p(0,1,0,...,0), . . . ,
p(n1,1,0,...,0), . . . , p(0,n2,...,nd), . . . , p(n1,n2,...,nd)

]
.

(10)

Example 3 Considering a degree n = (2, 1), the coefficients describing a real
polynomial correspond to the following degrees:

{(0, 0), (1, 0), (2, 0),
(0, 1), (1, 1), (2, 1)}.

ut

2.1.3 Hybrid polynomial

Consider a hybrid polynomial [9]

H(z1, . . . , z`, t1, . . . , tm) =
∑n1
i1=−n1

. . .
∑n`
i`=−n`

∑n`+1
i`+1=0 . . .

. . .
∑nd
id=0 h(i1,...,i`,i`+1,...,id)z

i1
1 · · · z

i`
` t

i`+1
1 · · · tidm,

(11)
with zi ∈ T, tj ∈ R and h(i1,...,i`,i`+1,...,id) ∈ C, ∀i = 1 : `, j = 1 : m (with
`+m = d). The relation

h(i1,...,i`,i`+1,...,id) = h∗(−i1,...,−i`,i`+1,...,id)
, (12)

ii = −ni : ni, ∀i = 1 : `, i`+j = 0 : nj , ∀j = 1 : m, implies that the polynomial
(11) takes real values on T` × Rm.

The coefficients describing the polynomial are those corresponding to an
`-tuple from H`, namely

{h(i1,...,i`,i`+1,...,id)}, (i1, i2, . . . , i`) ∈ H`. (13)

The elements of the set from (13) are ordered as follows: for each (i`+1, . . . , id)
m-tuple, covered like in (10), we enumerate all the (i1, . . . , i`) possible `-tuples,
the order being just like in (4).

Example 4 Adjustable FIR filters [9] can be described by the transfer function

H(z, t) =
K∑
k=0

(t− t0)kHk(z), (14)

where Hk(z), k = 0 : K, are FIR filters and t0 ∈ R is a constant. ut

8 Bogdan C. Şicleru, Bogdan Dumitrescu

2.2 Matrix polynomials

For polynomials with matrix coefficients the order of the coefficients is the same
as in the scalar case. The difference is that now we have matrices, instead of
scalars. So, we vectorize the matrices by stacking their columns; for symmetric
matrices we vectorize only their lower triangular part.

Example 5 The problem of finding the minimum value of the smallest eigen-
value of a univariate matrix trigonometric polynomial can be written as

µ? = max µ
s.t. R(z)− µIκ � 0, ∀z ∈ T (15)

Denoting
S(z) = R(z)− µIκ, (16)

the problem (15) is equivalent to

µ? = max µ
s.t. (16)

S(t) � 0, ∀z ∈ T
(17)

The matrix equality characterizing the problem is

vecs(Iκ)
Iκ(κ+1)

2 +nκ2

0

µ
vecs(S0)
vec(S1)

...
vec(Sn)

 =

vecs(R0)
vec(R1)

...
vec(Rn)

 , (18)

where Si, i = 0 : n, are the matrix coefficients of the polynomial S(t), vec(·)
is the function that transforms a matrix into a vector by stacking its columns
and vecs(·) is the function that transforms the lower triangular part of a Her-
mitian matrix into a vector, by stacking the relevant part of its columns. The
function that solves the problem (17) is shown in Table 2 and commented
below.

Comments. We stack all the vectorized coefficients in the variable Rvec.
We have κ(κ+ 1)/2 scalar constraints for the lower part of R0 and κ2 scalar
constraints for each Rk, k = 1 : n; the total number of constrains is computed
in line 3. The number of variables is computed in line 4. In line 6, we put in
the AsP matrix the multipliers for the variable µ, namely vecs(Iκ), and in line
8 we set the multipliers for the coefficient variables, the matrix Iκ(κ+1)

2 +nκ2 ,
as in (18). The only variable that appears in the objective function is µ (see
(17)), which is set in line 9. The POS3POLY structure has one unrestricted
variable, µ, and one positive univariate trigonometric polynomial with matrix
coefficients, as stated in lines 10–12. The pos3poly function is used in line 13

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 9

Table 2 POS3POLY program for solving the problem (17).

1 function mu = min eig trig(Rvec, n, K)

2 N = K * (K + 1) / 2; % number of elements in "half" a matrix

3 nConstr = N + n * K ^ 2; % nr. of scalar constraints

4 nVar = 1 + nConstr; % total number of POS3POLY variables

5 AsP = sparse(nConstr, nVar); % initialize AsP

6 AsP(1 : N, 1) = vecs(speye(K)); % coefficients of mu

7 % multipliers for the scalar elements of the matrix coefficients

8 AsP(:, 2 : end) = speye(nConstr);

9 csP = -speye(nVar, 1); % the objective function

10 KsP.f = 1; % the unrestricted variable mu

11 KsP.p{ 1 } = [n K]; % degree & coefficient size

12 KsP.ptype{ 1 }.trigonometric = 1; % trig. univariate polynomial

13 x = pos3poly(AsP, Rvec, csP, KsP); % use the POS3POLY library

14 mu = x(1); % the minimum eigenvalue

to solve the optimization problem. Finally, the minimum eigenvalue is returned
in line 14. ut

Let us take now the univariate real matrix polynomial

R(z) =
[

1 0
0 1

]
+
[

0 2
1 0

]
z−1 +

[
0 1
2 0

]
z

and apply on it the program from Table 2.
The RHS of (18) is

Rvec = [1 0 1 0 1 2 0]’;

Now we use the function that computes µ?:

mu = min_eig_trig(Rvec, 1, 2);

We find that µ? = −2. ut

2.3 Causal trigonometric polynomial

We consider the (matrix) polynomial

H(z) =
n∑

k=0

Hkz−k, (19)

z ∈ Td, Hk ∈ Cκ1×κ2 . The polynomial (19) is called a causal trigonometric
polynomial (known as a filter in the signal processing literature) and is de-
scribed by all the elements of all the matrix coefficients, considered as in the
vector:

[vec(H(0,...,0)); vec(H(1,0,...,0)); . . . ; vec(H(n1,0,...,0)); . . . ; vec(H(n1,...,nd))].
(20)

(Note that the order is the same as for the coefficients of a real polynomial.)

10 Bogdan C. Şicleru, Bogdan Dumitrescu

Example 6 For a 2-D polynomial of degree n = (2, 1), the matrix coefficients
are

{H(0,0),H(1,0),H(2,0),H(0,1),H(1,1),H(2,1)}.

3 Positivity on domains

So far we have discussed only about sum-of-squares polynomials which are
globally positive. For describing polynomials that are positive on (semialge-
braic) domains, one should use the int or dom subfields of ptype.

3.1 Univariate polynomials

Univariate polynomials can be positive on an interval or on a union of intervals.
To impose positivity on a union of intervals, one must concatenate the intervals
into the field int.

Example 7 The commands necessary to create two univariate trigonometric
scalar polynomial variables of degree n, one positive on the interval [0, π/4]
and the other positive on [π/3, π], are

KsP.p{ 1 } = [n 1];
KsP.p{ 2 } = [n 1];
KsP.ptype{ 1 }.trigonometric = 1;
KsP.ptype{ 2 }.trigonometric = 1;
KsP.ptype{ 1 }.int = [0 pi/4];
KsP.ptype{ 2 }.int = [pi/3 pi];

ut

Example 8 To create a trigonometric polynomial (of degree n), positive on
[0, 0.3π] ∪ [0.5π, 0.7π], one can use the following commands:

KsP.p{ 1 } = [n 1];
KsP.ptype{ 1 }.trigonometric = 1;
KsP.ptype{ 1 }.int = [0 0.3*pi 0.5*pi 0.7*pi];

ut

3.2 Multivariate polynomials

In the case of multivariate polynomials, positivity can be characterized on
domains of the form

D = {q | D`(q) ≥ 0, ` = 1 : L}, (21)

where q is a multivariate variable which can contain trigonometric and/or real
variables (taking values on the unit circle or the real axis, respectively) and
D`(q) are given polynomials.

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 11

The set (21) must satisfy the relatively mild conditions (in particular
boundedness) from [22,13] (for trigonometric polynomials, no special condition
is needed), under which a polynomial

R(q) > 0, ∀q ∈ D, (22)

is relaxed as

R(q) = S0(q) +
L∑
`=1

D`(q)S`(q), (23)

where S`(q), ` = 0 : L, are sum-of-squares. POS3POLY implements (23) with
sum-of-squares of minimal degree, which is enough for most practical purposes
in engineering applications; if needed, the degree of R(q) can be increased
artificially, thus increasing the degree of the relaxation. The sum-of-squares ar
parameterized via Theorem 1.

To describe domains like (21), the field dom contains three subfields: deg,
coef and nc. There are two possibilities of describing the polynomials D`(q).
In the first, the field deg is a matrix with L rows, row ` being the degree of the
polynomial D`(q); the field coef is a vector that contains the concatenated
coefficients of the polynomials, enumerated as shown in Section 2. In this case,
the field nc must not be used. The usage of the field nc describes the second
case, in which the polynomials are sparse and so it is more efficient to give their
nonzero coefficients. The field nc is a vector of length L, whose `-th element is
the number of nonzero coefficients of D`(q); deg is a matrix whose rows contain
the degrees of the monomials with nonzero coefficients and coef is a vector
containing these coefficients (in the same order, obviously). If a polynomial has
some symmetry, due to its nature, only the relevant coefficients are needed;
for instance, a symmetric real trigonometric polynomial is described only by
its ”half”, see again Section 2.

POS3POLY can also handle a union of domains like those in (21):

D′ =
L′⋃
`′=1

D`′ . (24)

The description of the domain D′ is made via the field nunion of dom. The
field nunion is a vector with L′ elements—the `′-th element being the number
of polynomials used to describe D`′ . The fields nc, deg, coef have the same
meaning as described above, but concatenating the data for all the polynomials
and all the domains D`′ .

As an example of optimization with polynomials that are positive on do-
mains, we consider the minimax optimization of 2-D linear-phase FIR filters
with diamond shape passband. The problem can be stated as [7, Section 5.2.2]

min
γs,h

γs

s.t. 1 + γp −H(ω) ≥ 0, ∀ω
−1 + γp +H(ω) ≥ 0, ∀ω ∈ Dp
γs −H(ω) ≥ 0, ∀ω ∈ Ds
γs +H(ω) ≥ 0, ∀ω ∈ Ds

(25)

12 Bogdan C. Şicleru, Bogdan Dumitrescu

π

π

−π

−π 0 ωp
ωs

Fig. 3 Diamond shape passband for domain Dp = {ω1,2 | |ω1| + |ω2| ≤ ωp}; a = cosωp,
b = cosωs.

where H(z) is a bivariate filter and H(ω) is the frequency response for z = ejω ,
d = 2 in (3), γp and γs are passband and stopband error bound, respectively,
and Dp, Ds are the passband and stopband domain, respectively. A diamond
shape (see Figure 3, passband with vertical lines and stopband with horizontal
lines) is obtained by adopting the following definitions:

Dp = {ω1,2 | cos (ω1 + ω2)− a ≥ 0, cos (ω1 − ω2)− a ≥ 0, cosω1 + cosω2 ≥ 0}
Ds = Ds1 ∪ Ds2 ∪ Ds3

(26)
where

Ds1 = {ω1,2 | − cos (ω1 + ω2) + b ≥ 0}
Ds2 = {ω1,2 | − cos (ω1 − ω2) + b ≥ 0}
Ds3 = {ω1,2 | − cosω1 − cosω2 ≥ 0} .

(27)

The relations (26) and (27) can be written equivalently as

Dp = {z1,2 | Dp1(z1, z2) ≥ 0, Dp2(z1, z2) ≥ 0, Dp3(z1, z2) ≥ 0} (28)

and
Ds1 = {z1,2 | Ds1(z1, z2) ≥ 0}
Ds2 = {z1,2 | Ds2(z1, z2) ≥ 0}
Ds3 = {z1,2 | Ds3(z1, z2) ≥ 0} ,

where
Dp1(z1, z2) = (z1z2 + z−1

1 z−1
2)/2− a

Dp2(z1, z2) = (z−1
1 z2 + z1z

−1
2)/2− a

Dp3(z1, z2) = (z1 + z−1
1)/2 + (z2 + z−1

2)/2
Ds1(z1, z2) = −(z1z2 + z−1

1 z−1
2)/2 + b

Ds2(z1, z2) = −(z−1
1 z2 + z1z

−1
2)/2 + b

Ds3(z1, z2) = −(z1 + z−1
1)/2− (z2 + z−1

2)/2.

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 13

The problem (25) is relaxed [7, Section 3.5] to

min
γs,h,si,i=0:3

γs

S0(z) is sum-of-squares
S1(ω) ≥ 0, ∀ω ∈ Dp
S2(ω) ≥ 0, ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3
S3(ω) ≥ 0, ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3

(29)

where
S0(z) = 1 + γp −H(z)
S1(z) = −1 + γp +H(z)
S2(z) = γs −H(z)
S3(z) = γs +H(z).

The system that characterizes the problem (29) is

0 IM IM 0 0 0
0 −IM 0 IM 0 0
−1
0 IM 0 0 IM 0
−1
0 −IM 0 0 0 IM

γs
h
s0

s1

s2

s3

 =

1 + γp

0
−1 + γp

0
0
0

 , (30)

with M as in (5).
Let us detail now how to describe positivity on a domain. We consider two

approaches: the first in which the polynomials which define the positivity do-
main are given by all their coefficients and the second in which the polynomials
are described only by their nonzero coefficients.

3.2.1 Full polynomial description

We consider here the description of the positivity for the polynomial S1(z)
using all the coefficients of the polynomials.

The polynomial S1(z) is positive on Dp—which is defined by the positivity
of three polynomials, as (28) shows. We use the fields deg and coef to set the
positivity domain.

We set the degrees for the polynomials of the positivity domain with

KsP.ptype{ 2 }.dom.deg = [1 1; 1 1; 1 1];

All the coefficients of the polynomials are set using

KsP.ptype{ 2 }.dom.coef = [-a 0 0 0 0.5 ...
-a 0 0.5 0 0 ...
0 0.5 0 0.5 0];

14 Bogdan C. Şicleru, Bogdan Dumitrescu

3.2.2 Sparse polynomial description

We take now the case where we describe the polynomials used for positivity
as sparse polynomials. We exemplify on the polynomial S1(z). (See also the
program from Table 3, which considers the sparse approach.) To describe the
positivity domains we use the fields nc, deg and coef.

Each of the three polynomials which describe the positivity for the poly-
nomial S1(z) has two nonzero coefficients; this is imposed in the KsP structure
by

KsP.ptype{ 2 }.dom.nc = [2 2 2];

The degrees of the monomials corresponding to the nonzero coefficients are
described by the POS3POLY code

KsP.ptype{ 2 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1];

Finally, the associated coefficients are

KsP.ptype{ 2 }.dom.coef = [-a 0.5 -a 0.5 0.5 0.5];

The program that solves the problem (29) is in Table 3 and is discussed in
the next paragraph.

Comments. We initialize the variables AsP, bsP, csP in lines 6–8. The lines
9–18 set the matrix from the LHS of (30). In lines 19–20 we set the nonzero el-
ements of the RHS of (30). We set the objective function in line 21. γs and the
filter H are unrestricted variables, as set in line 22. The degrees of the polyno-
mials are set in lines 23–24. The number of variables for the four polynomials
are set in lines 25–26. The positivity domain for the second polynomial is set
in lines 27–29. The positivity domains for the last two polynomials are set in
lines 30–37. Remark the usage of the field nunion: each domain used in the
union is defined by one polynomial. We call the POS3POLY library in line 38.
Finally, in line 39, we obtain the causal part of the filter. ut

Example 9 For example, the commands

h = lp_fir2d([7 7], 0.1, 0.1, -0.7);
freqz2d(half2all2d(h, [7 7]));

design a 2-D FIR filter using the program from Table 3 and plot its frequency
response, shown in Figure 4. (The functions freqz2d and half2all2d are part
of the POS3POLY library.) The optimal stopband error is γs = 0.0102. ut

4 Bounded Real Lemma

POS3POLY also offers support to specify a Bounded Real Lemma (BRL) [7,
Section 4.3], [8], of the form

‖H(q)‖∞ < |A(q)|, ∀q ∈ D, (31)

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 15

Fig. 4 Frequency response of linear-phase 2-D FIR filter.

where H(q) and A(q) are causal (positive orthant) polynomials of the same
degree and D is like in (24); A(q) has scalar coefficients, but H(q) may have
matrix coefficients of size κ1 × κ2. Relation (31) can be written as

H(q)H(q∗)H < R(q) · Iκ1 , ∀q ∈ D, (32)

with R(q) = A(q)A(q∗)H . The scalar case of (31) is

‖H(q)‖∞ < |A(q)|, ∀q ∈ D, (33)

which is equivalent to H(q)H(q∗)∗ < R(q), ∀q ∈ D. The particular case of
(33), where A(q) is a constant, has been extensively discussed in control and
signal processing, see e.g. [26] and [4], respectively.

Relation (32) is equivalent to (22) and a Linear Matrix Inequality (LMI)
condition on H(q), which is given in Theorem 2 for the case D = Td and scalar
coefficients, but is similar in the general case.

In POS3POLY, a BRL is defined by H(q) and R(q). The polynomial R(q)
is described together with the domain D, as a variable that is positive on D.
Also, one has to introduce the dependence of the coefficients of H(q) on the
variables x of the problem (1). To specify a BRL in a POS3POLY problem,
the field brl in the KsP structure has two subfields: hrows and hsize. The
field hrows is a vector containing the rows of the matrix AsP that describe the
polynomial H(q) via

Hvec = AsP(hrows, :) · x− bsP(hrows),

where Hvec denotes the vector of the coefficients of H(q), in the order described
in Section 2.3; obviously, the length of the vector hrows must be equal to the
number of elements of the coefficients of H(q). The field hsize contains the
vector [κ1 κ2]; if κ1 = κ2, then hsize may be a scalar, equal to κ1.

16 Bogdan C. Şicleru, Bogdan Dumitrescu

Table 3 POS3POLY program for solving the problem (29).

1 function h = lp fir2d(n, gp, a, b)

2 N = nch(n); % number of n-tuples

3 nConstr = 4 * N; % number of constraints

4 nVar = nConstr + N + 1; % number of variables

5 I = speye(N);

6 AsP = sparse(nConstr, nVar); % initialize POS3POLY

7 bsP = sparse(nConstr, 1); % variables

8 csP = sparse(1, nVar);

9 AsP(1: N, 2 : N + 1) = I; % 1 + gp = H + S0

10 AsP(1: N, N + 2 : 2 * N + 1) = I;

11 AsP(N + 1 : 2 * N, 2 : N + 1) = -I; % -1 + gp = -H + S1, Dp

12 AsP(N + 1 : 2 * N, 2 * N + 2 : 3 * N + 1) = I;

13 AsP(2 * N + 1 , 1) = -1; % gs = H + S2, Ds1, Ds2, Ds3

14 AsP(2 * N + 1 : 3 * N, 2 : N + 1) = I;

15 AsP(2 * N + 1 : 3 * N, 3 * N + 2 : 4 * N + 1) = I;

16 AsP(3 * N + 1 , 1) = -1; % gs = -H + S3, Ds1, Ds2, Ds3

17 AsP(3 * N + 1 : 4 * N, 2 : N + 1) = -I;

18 AsP(3 * N + 1 : 4 * N, 4 * N + 2 : 5 * N + 1) = I;

19 bsP(1) = 1 + gp; % free terms for the

20 bsP(1 + N) = -1 + gp; % polynomial constraints

21 csP(1) = 1; % 1 for eps in the objective function

22 KsP.f = 1 + N; % h and gs are free variables

23 KsP.p{ 1 } = [n 1]; KsP.p{ 2 } = [n 1];

24 KsP.p{ 3 } = [n 1]; KsP.p{ 4 } = [n 1];

25 KsP.ptype{ 1 }.trigonometric = 2; KsP.ptype{ 2 }.trigonometric = 2;

26 KsP.ptype{ 3 }.trigonometric = 2; KsP.ptype{ 4 }.trigonometric = 2;

27 KsP.ptype{ 2 }.dom.nc = [2 2 2];

28 KsP.ptype{ 2 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1;];

29 KsP.ptype{ 2 }.dom.coef = [-a 0.5 -a 0.5 0.5 0.5];

30 KsP.ptype{ 3 }.dom.nunion = [1 1 1];

31 KsP.ptype{ 3 }.dom.nc = [2 2 2];

32 KsP.ptype{ 3 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1];

33 KsP.ptype{ 3 }.dom.coef = [b -0.5 b -0.5 -0.5 -0.5];

34 KsP.ptype{ 4 }.dom.nunion = [1 1 1];

35 KsP.ptype{ 4 }.dom.nc = [2 2 2];

36 KsP.ptype{ 4 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1];

37 KsP.ptype{ 4 }.dom.coef = [b -0.5 b -0.5 -0.5 -0.5];

38 x = pos3poly(AsP, bsP, csP, KsP); % use POS3POLY

39 h = x(2 : N + 1); % "half" of the coefficients of the filter

To exemplify the usage of the brl field we present the minimax optimiza-
tion of 2-D approximately linear-phase FIR filters. The problem is discussed
in [7, Section 5.2.3] and can be cast as

min
γs,h

γs

s.t. |H(ω)−G(ω)| ≤ γp, ∀ω ∈ Dp
|H(ω)| ≤ γs, ∀ω ∈ Ds

(34)

where H(z) is a bivariate causal filter and G(z) = z−τ is a delay. The design
data are: the delay τ ∈ N2, the passband error bound γp and the diamond-
shaped passband and stopband Dp, Ds, respectively, given by (26). The stop-
band error γs is minimized.

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 17

Introducing positive polynomials for the description of the two BRL con-
straints, the problem (34) becomes the POS3POLY problem (in which the
condition (22) is written explicitly)

min
γs,h,s0,s1

γ2
s

s.t. S0(z) = γ2
p

S1(z) = γ2
s

S0(ω) ≥ 0, ∀ω ∈ Dp
S1(ω) ≥ 0, ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3
|H(ω)−G(ω)|2 ≤ S0(ω), ∀ω ∈ Dp
|H(ω)|2 ≤ S1(ω), ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3

(35)

where Dsi , i = 1 : 3, are as in (27).
The characteristic system for the problem (35) is

0 0 IM 0
−1
0 0 0 IM
0 IN 0 0
0 IN 0 0

γ2
s

h
s0

s1

 =

γ2
p

0
0
g
0

 (36)

where M is computed as in (5) and N = (n1 + 1)(n2 + 1). (The vector g has
one on position τ2(n1 + 1) + τ1 + 1 and zeros elsewhere.) The program which
solves the problem (35) is listed in Table 4 and commented next.

Comments. We introduce the degree of the polynomial H(ω), γp and the
delay τ as input parameters of the function. The number of coefficients for
S0(z) and S1(z) is computed in line 2. In line 3 we compute the number of
coefficients of the filter H(z). In lines 5 and 6 we compute the total number
of constraints and variables, respectively. In lines 11–17 we construct the AsP
and bsP matrices—the four block constraints from (36). We set H(z) and γs
as free variables in line 18. In lines 19–20 we set the degrees of the positive
polynomials and we declare them as bivariate in lines 21–22. The positivity
domains for the polynomials are set in lines 23–29. In lines 30–33 we set the
BRL constraints. We call the POS3POLY library in line 34 and return the
coefficients of the filter in line 35. ut

5 POS3POLY and CVX

We discuss here the support of POS3POLY for CVX. Taking advantage of
the possibility to define convex sets in CVX, POS3POLY allows with a single
function the creation of all types of positive (sum-of-squares) polynomials or
BRL variables.

The command to create a positive (sum-of-squares) polynomial is

R == sos_pol(p, ptype);

18 Bogdan C. Şicleru, Bogdan Dumitrescu

Table 4 POS3POLY program for solving the problem (35).

1 function h = app lp fir2d(n, gp, tau)

2 N = nch(n); % number of n-tuples

3 M = prod(n + 1); % number of filter coefs.

4 N2 = 2 * N; % nr. coefs. for the SOS pols.

5 nConstr = N2 + 2 * M; % number of eq. constraints

6 nVar = N2 + M + 1; % number of variables

7 In = speye(N); Im = speye(M);

8 AsP = sparse(nConstr, nVar); % initialize POS3POLY

9 bsP = sparse(nConstr, 1); % variables

10 csP = speye(1, nVar);

11 AsP(1: N, M + 2 : M + N + 1) = In; % S0

12 bsP(1) = gp ^ 2; % for the free term

13 AsP(N + 1 , 1) = -1; % S1

14 AsP(N + 1 : 2 * N, M + N + 2 : M + 2 * N + 1) = In;

15 AsP(N2 + 1 : N2 + M, 2 : M + 1) = Im; % for the 1st BRL filter

16 bsP(N2 + tau(2) * (n(1) + 1) + tau(1) + 1) = 1;

17 AsP(N2 + M + 1 : N2 + M * 2, 2 : M + 1) = Im; % for the 2nd BRL filter

18 KsP.f = 1 + M; % h and gs are free variables

19 KsP.p{ 1 } = [n 1]; % the degrees of the polynomials are ’n’

20 KsP.p{ 2 } = [n 1]; % and its coefficients are scalars

21 KsP.ptype{ 1 }.trigonometric = 2; % the polynomial variables

22 KsP.ptype{ 2 }.trigonometric = 2;

23 KsP.ptype{ 1 }.dom.nc = [2 2 2]; % Dp

24 KsP.ptype{ 1 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1;];

25 KsP.ptype{ 1 }.dom.coef = [-a 0.5 -a 0.5 0.5 0.5];

26 KsP.ptype{ 2 }.dom.nunion = [1 1 1]; % Ds1 U Ds2 U Ds3

27 KsP.ptype{ 2 }.dom.nc = [2 2 2];

28 KsP.ptype{ 2 }.dom.deg = [0 0; 1 1; 0 0; 1 -1; 1 0; 0 1];

29 KsP.ptype{ 2 }.dom.coef = [-b -0.5 -b -0.5 -0.5 -0.5];

30 KsP.ptype{ 1 }.brl.hsize = 1; % BRL 1

31 KsP.ptype{ 1 }.brl.hrows = N2 + 1 : N2 + M;

32 KsP.ptype{ 2 }.brl.hsize = 1; % BRL 2

33 KsP.ptype{ 2 }.brl.hrows = N2 + M + 1 : N2 + 2 * M;

34 x = pos3poly(AsP, bsP, csP, KsP); % call POS3POLY

35 h = x(2 : M + 1); % the coefficients of the filter

where p and ptype are structures for one polynomial, as presented in Section
2. R is a vector variable, containing the coefficients of the polynomial described
by p and ptype, ordered as described also in Section 2.

When one wants to create a BRL, then the command is

HR == sos_pol(p, ptype);

where p and ptype are, as above, the structures that describe the polynomial.
The variable HR is formed by [H; R] where H and R denote H and R from
(32), respectively. So, the function describes a single vector variable, obtained
by the concatenation of the vectors H and R. Note that now the field hrows of
brl is no longer needed due to the fact that the matrix AsP is not involved.

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 19

Table 5 POS3POLY–CVX program for solving the problem (38).

1 function [mu] = min pol cvx(n, r)

2 nC = (1 + prod(2 * n + 1)) / 2; % number of coefficients

3 cvx begin

4 variable mu;

5 variable S(nC);

6 maximize mu;

7 S == sos pol([n 1]); % SOS polynomial

8 mu * eye(nC, 1) + S == r; % equality constraint

9 cvx end

5.1 Minimum of a polynomial

We present here the computation of the minimum value of a multivariate
trigonometric polynomial. For the polynomial R(z) from (3) the problem can
be cast as a POS3POLY problem in the form

µ? = max
µ,s

µ

s.t. S(z) = R(z)− µ
S(z) ≥ 0, ∀z ∈ Td

(37)

The problem (37) is relaxed to

µ1 = max
µ,s

µ

s.t. S(z) = R(z)− µ
S(z) is sum-of-squres

(38)

The equality constraint from (38) can be written as[
1
0

]
µ+ s = r, (39)

where s, r are variables denoting the coefficients of S(z) and R(z), respectively.
The function that solves the problem (38) is listed in Table 5.

Comments. The input parameters of the function describe the polynomial
by its degree n and the vector r of its coefficients. The number of coefficients
which describes the polynomial is computed in line 2, using (5). The variable
µ is denoted by mu in line 4 and the polynomial S(z) by S in line 5; S is a
vector denoting the coefficients of the polynomial. We maximize mu. In line
7 we create the sum-of-squares polynomial variable. The equality constraint
(39) is enforced in line 8. The command cvx end runs CVX and solves the
problem. ut

Example 10 We consider the bivariate polynomial

R(z) = sym−1 + 38 + 18z1 + 4z2
1 + z−2

1 z2 + 2z−1
1 z2 + z2 − 8z1z2 − 5z2

1z2

where sym−1 is the symmetric part of the polynomial. The MATLAB code to
find the minimum is

20 Bogdan C. Şicleru, Bogdan Dumitrescu

mu = min_pol_cvx([2 1], [38 18 4 1 2 1 -8 -5]);

The minimum is µ1 = 1.8214. (Note that the order of the coefficients in r
corresponds to the order given in (4).) ut

5.2 2-D H∞ deconvolution

We tackle the 2-D H∞ deconvolution problem [7, Section 5.3]

min
X

γ

s.t. ‖A(z)X(z)−B(z)‖∞ ≤ γ
(40)

where A, B and X are 2-D causal trigonometric polynomials with matrix coef-
ficients of size κ1×κ2. The problem (40) can be reformulated as a POS3POLY
problem

min
γ,x,s

γ2

s.t. S(z) = γ2

A(z)X(z)−B(z) = Y(z)
S(z) ≥ 0
‖Y(z)‖2∞ ≤ S(z)Iκ1

(41)

where S(z) is a trigonometric polynomial whose degree is the maximum be-
tween the degrees of A(z)X(z) and B(z). The two equality constraints from
(41) are

s =
[

1
0

]
γ2 (42)

and
y = Cx− b (43)

where b, x, y are the vectors of B(z), X(z), Y(z), enumerated as in (20), and
C is a convolution matrix made of the coefficients of A(z). The MATLAB
program which solves the problem (41) is listed in Table 6.

Comments. We set as input parameters the degrees and coefficients of the
polynomials A(z) and B(z), the degree of X(z) and the size of the matrix
coefficients of the causal polynomials. In lines 3 and 4 we create the coef-
ficient vectors for the polynomials A(z) and B(z), respectively, as in (20).
The number of scalar coefficients for a matrix coefficient of a causal polyno-
mial is computed in line 5. In lines 6 and 7 we compute the number of scalar
coefficients for the polynomials B(z) and X(z), respectively. The number of
coefficients for the scalar trigonometric polynomial S(z) is computed in line
8; this polynomial is bivariate as stated in line 9. The size of the matrix coef-
ficients from the BRL is set in line 10. We create a BRL variable in line 15.
The constraint in line 17 denotes the block constraint from (42) and the one
in line 18, the one in (43). (The functions spcausal2fvec and polconv2d are
part of the POS3POLY library.) ut

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 21

Table 6 POS3POLY–CVX program for solving the problem (41).

1 function [X, g] = deconv2d(dA, cA, dB, cB, nX, K)

2 nA = max(dA); nB = nA + nX; % degrees for pol. A and B

3 vA = spcausal2fvec(nA, dA, cA, K); % vector for the coef. of A

4 vB = spcausal2fvec(nB, dB, cB, K); % vector for the coef. of B

5 KK = prod(K); % number of scalar elements in a matrix

6 pB = prod(nB + 1) * KK; % number of scalar elements for pol. B

7 pX = prod(nX + 1) * KK; % number of scalar elements for pol. X

8 N = nch(nB); % number of elements for the trig. pol.

9 ptype.trigonometric = 2; % bivariate polynomial

10 ptype.brl.hsize = K; % size of the matrix coefficients

11 cvx begin

12 variable X(pX); % vector for the pol. X

13 variable g; % gamma^2

14 variable HR(N + pB);

15 HR == sos pol([nB 1], ptype); % BRL variable

16 minimize g;

17 HR(pB + 1 : end) == g * speye(N, 1);

18 HR(1 : pB) == polconv2d(vA, nA, X, nX, [2 2], [2 2], 0) - vB;

19 cvx end

20 g = sqrt(g);

Example 11 We take the polynomials

A(z) =
[

7 2
2 3

]
+
[

10 0
0 −6

]
z−1
1 +

[
2 3
−1 −2

]
z−1
2 +

[
5 8
2 4

]
z−1
1 z−1

2

and B(z) =
[

1 0
0 1

]
z−2
1 z−2

2 . We consider the degree of the polynomial X(z) to

be n = (1, 1). The MATLAB commands to compute the polynomial X(z) are:

cA{ 1 } = [7 2; 2 3]; cA{ 2 } = [10 0; 0 -6];
cA{ 3 } = [2 3; -1 -2]; cA{ 4 } = [5 8; 2 4];
dA = [0 0; 1 0; 0 1; 1 1];
cB{ 1 } = eye(2); dB = [2 2];
K = [2 2];
[X, g] = deconv2d(dA, cA, dB, cB, [1 1], K);

We obtain γ = 0.95; for n = (2, 2) and n = (3, 3) we obtain γ = 0.77 and
γ = 0.38, respectively. As expected, by increasing the degree of X(z), the error
is improved. ut

6 Conclusions

We have introduced a MATLAB library able to solve convex optimization
problems which involve positive polynomials among their variables. The library
offers the possibility to work with three types of polynomials: trigonometric,
real and hybrid. The coefficients can be scalar or matrix, real or complex.
POS3POLY also offers the support for declaring a BRL type constraint. The
POS3POLY library can be downloaded from www.schur.pub.ro/pos3poly.

22 Bogdan C. Şicleru, Bogdan Dumitrescu

7 Acknowledgements

This work was supported by CNCSIS-UEFISCSU, project PNII – IDEI 309/2007
and the Sectoral Operational Programme Human Resources Development 2007-
2013 of the Romanian Ministry of Labour, Family and Social Protection
through the Financial Agreement POSDRU/6/1.5/S/16.

A Parameterizations

A.1 Sum-of-squares

To illustrate the parameterization behind a sum-of-squares polynomial we give the next
result for scalar trigonometric polynomials.

Theorem 1 The polynomial from (3) is sum-of-squares if and only if there exists a positive
semidefinite matrix Q ∈ CN×N such that

rk = Tr[Θkd ⊗ · · · ⊗Θk1 ·Q], k ∈ Hd, (44)

where Θk is the elementary Toeplitz matrix with ones on the k-th diagonal and zeros else-
where and N =

∏d
i=1(ni + 1). The matrix Q is called a Gram [19,2,18] matrix associated

with the polynomial (3). ut

Hence, in order to create a scalar trigonometric sum-of-squares polynomial, POS3POLY
implements the equalities from (44).

A.2 Bounded Real Lemma

A BRL type constraint for scalar trigonometric polynomials is implemented in POS3POLY
using the following result.

Theorem 2 Let H(z) and A(z) be causal polynomials. Denoting R(z) = A(z)A∗(z−1), the
inequality

|H(ω)| ≤ |A(ω)|
is satisfied, if and only if there exists a matrix Q � 0, such that the relations (44) and[

Q h

hH 1

]
� 0 hold. ut

References

1. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
2. M.D. Choi, T.Y. Lam, and B. Reznick. Sums of squares of real polynomials. Proc.

Symp. Pure Math., 58(2):103–126, 1995.
3. T.N. Davidson, Z.Q. Luo, and J.F. Sturm. Linear matrix inequality formulation of

spectral mask constraints with applications to fir filter design. IEEE Trans. Signal
Proc., 50(11):2702–2715, 2002.

4. C. Du, L. Xie, and Y.C. Soh. H∞ filtering of 2-D discrete systems. IEEE Trans. Signal
Proc., 48(6):1760–1768, 2000.

5. B. Dumitrescu. Multidimensional stability test using sum-of-squares decomposition.
IEEE Trans. Autom. Circ. Syst. I, 53(4):928–936, 2006.

6. B. Dumitrescu. Trigonometric polynomials positive on frequency domains and applica-
tions to 2-D FIR filter design. IEEE Trans. Signal Proc., 54(11):4282–4292, 2006.

POS3POLY—a Preprocessor for Optimization with Positive Polynomials 23

7. B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applica-
tions. Springer, 2007.

8. B. Dumitrescu. Bouded real lemma for multivariate trigonometric matrix polynomials
and FIR filter design applications. In Proc. European Sign. Proc. Conf. (EUSIPCO),
pages 676–680, Glasgow, Scotland, 2009.

9. B. Dumitrescu, Bogdan C. Şicleru, and R. Ştefan. Positive hybrid real-trigonometric
polynomials and applications to adjustable filter design and absolute stability analysis.
Circ. Syst. and Sign. Proc., 29(5):881–899, 2010.

10. M. Grant and S. Boyd. CVX: MATLAB software for disciplined convex programming,
version 1.21. http://cvxr.com/cvx, May 2010.

11. D. Henrion and J.B. Lasserre. GloptiPoly: Global optimization over polynomials with
MATLAB and SeDuMi. ACM Trans. Math. Soft., 29(2):165–194, June 2003.

12. H. Ichihara. Optimal control for polynomial systems using matrix sum of squares re-
laxations. IEEE Trans. Autom. Contr., 54(5):1048–1053, 2009.

13. T. Jacobi. A representation theorem for certain partially ordered commutative rings.
Math. Z., 237:259–273, 2001.

14. J.B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. Optim., 11(3):796–814, 2001.

15. S.J. Li, K.L. Teo, X.Q. Yang, and S.Y. Wu. Robust envelope-constrained filter with
orthonormal bases and semi-definite and semi-infinite programming. Optim. Eng.,
8(3):299–319, 2007.

16. J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

17. A. Magnani and S.P. Boyd. Convex piecewise-linear fitting. Optim. Eng., 10(1):1–17,
2009.

18. J.W. McLean and H.J. Woerdeman. Spectral factorizations and sum of squares repre-
sentations via semidefinite programming. SIAM J. Matr. Anal. Appl., 23(3):646–655,
2001.

19. P.A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math.
Program., Ser.B, 96:293–320, 2003.

20. C. Popeea and B. Dumitrescu. Optimal compaction gain by eigenvalue minimization.
Sign. Proc., 81(5):1113–1116, 2001.

21. S. Prajna and A. Papachristodoulou. SOSTOOLS: Sum of squares optimization toolbox
for Matlab, 2004.

22. M. Putinar. Positive polynomials on compact semialgebraic sets. Indiana. Univ. Math.
J., 42(3):969–984, 1993.

23. J.F. Sturm. Using SeDuMi, a MATLAB toolbox for optimization over symmetric cones.
Opt. Meth. Soft., 11–12:625–653, 1999.

24. W. Tan and A. Packard. Stability region analysis using polynomial and composite
polynomial lyapunov functions and sum-of-squares programming. IEEE Trans. Autom.
Contr., 53(2):565–571, 2008.

25. K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3—a MATLAB software package for
semidefinite programming. Opt. Meth. Soft., 11(1):545–581, 1999.

26. L. Xie and C.E. de Souza. Robust H∞ control for linear time-invariant systems with
norm-bounded uncertainty in the input matrix. Syst. Contr. Lett., 14(5):389–396, 1990.

